[1]
G. D. Quinn, P. J. Patel, I. Lloyd, Effect of loading rate upon conventional ceramic microindentation hardness, J. Res. Natl. Inst. Stand. Technol. 107 (2002) 299-306.
DOI: 10.6028/jres.107.023
Google Scholar
[2]
H. Sumiya, Thermally activated deformation under Knoop indentations in super-hard directions of high-quality synthetic type-IIa diamond crystals, Diamond. Relat. Materi. 15 (2006) 1576-1579.
DOI: 10.1016/j.diamond.2005.12.058
Google Scholar
[3]
C. H. Tsai, S. R. Jian, J. Y. Juang, Berkovich nanoindentation and deformation mechanisms in GaN thin films, Appl. Surf. Sci. 254 (2009) 1997-(2002).
DOI: 10.1016/j.apsusc.2007.08.022
Google Scholar
[4]
O. Sahin, O. Uzun, M. Sopicka-Lizer, H. Gocmezd, U. Kölemen, Dynamic hardness and elastic modulus calculation of porous SiAlON ceramics using depth-sensing indentation technique, J. Euro. Ceram. Soc. 28 (2008) 1235-1242.
DOI: 10.1016/j.jeurceramsoc.2007.09.052
Google Scholar
[5]
L. J. Hu, D. Wang, Z. S. Lu, Y. W. Song, C. M. Song, Correlation between functionated structure and nanomechanical property profiles of silsesquioxane films and bulks, Macromol. Symp. 267 (2008) 79-84.
DOI: 10.1002/masy.200850714
Google Scholar
[6]
F. J. Ulm, M. Vandamme, H. M. Jennings, etal, Does microstructure matter for statistical nanoindentation techniques, Cem. Concr. Compos. 32 (2010) 92-99.
Google Scholar
[7]
A. Veillère, A. Sundaramurthy, J. M. Heintz, etal, Relationship between interphase chemistry and mechanical properties at the scale of micron in Cu–Cr/CF composite, Acta Mater. 59 (2011) 1445-1455.
DOI: 10.1016/j.actamat.2010.11.006
Google Scholar
[8]
C. W. Chang and J. D. Liao, Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au, Nanotechnol. 19 (2008) 315703.
DOI: 10.1088/0957-4484/19/31/315703
Google Scholar
[9]
C. L. Xu, C. H. Zhang, J. J. Li, etal, A HRXRD and nano-indentation study on Ne-implanted 6H–SiC, Nucl. Instr. Meth. Phy. Res. B286 (2012) 129-133.
Google Scholar
[10]
B. Wolf, A. Richter, V. Weihnacht, Differential and integral hardness -new aspects of quantifying load–depth-data in depth-sensing nanoindentation experiments, Surf. Coat. Technol. 183 (2004) 141-150.
DOI: 10.1016/j.surfcoat.2003.09.050
Google Scholar
[11]
A. Richter, C. P. Daghlian, R. Ries, V. L. Solozhenko, Investigation of novel superhard materials by multi-cycling nanoindentation, Diamond Relat. Mater. 15 (2006) 2019-(2023).
DOI: 10.1016/j.diamond.2006.09.015
Google Scholar
[12]
C. Polizzotto, Strain gradient plasticity, strengthening effects and plastic limit analysis, Int. J. Solids Struct. 47 (2010) 100-112.
DOI: 10.1016/j.ijsolstr.2009.09.019
Google Scholar
[13]
Y. Idell, G. Facco, A. Kulovits, etal, Strengthening of austenitic stainless steel by formation of nanocrystalline c-phase through severe plastic deformation during two-dimensional linear plane-strain machining, Scripta Mater. 68 (2012) 667-670.
DOI: 10.1016/j.scriptamat.2013.01.025
Google Scholar
[14]
A. A. Elmustafa, D. S. Stone. Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, J. Mech. Phy. Solids 51 (2003) 357-381.
DOI: 10.1016/s0022-5096(02)00033-9
Google Scholar
[15]
L. Q. Zheng, A. W. Schmid, J. C. Lambropoulos. Surface effects on Young's modulus and hardness of fused silica by nanoindentation study, J. Mater. Sci. 42 (2007) 191-198.
DOI: 10.1007/s10853-006-1051-2
Google Scholar
[16]
D. Ye, S. Matsuoka, N. Nagashima. Determination of fatigue mesoscopic mechanical properties of an austenitic stainless steel using depth-sensing indentation (DSI) technique, Mater. Sci. Engin. A456 (2007) 120-129.
DOI: 10.1016/j.msea.2006.12.026
Google Scholar
[17]
C. L. Eriksson, P. L. Larsson, D. J. Rowcliffe. Strain-hardening and residual stress effects in plastic zones around indentations, Mater. Sci. Engin. A340 (2003) 193-203.
DOI: 10.1016/s0921-5093(02)00186-7
Google Scholar
[18]
D. A. Lucca, K. Herrmann, M. J. Klopfstein. Nanoindentation: Measuring methods and applications, CIRP Annals – Manufac. Technol. 59 (2010) 803-819.
DOI: 10.1016/j.cirp.2010.05.009
Google Scholar
[19]
A. Rubin, C. Gauthier, R. Schirrer. The friction coefficient on polycarbonate as a function of the contact pressure and nanoscale roughness, J. Polymer Sci. Part B: Polymer Phy. 50 (20120 580-588.
DOI: 10.1002/polb.23046
Google Scholar
[20]
A. C. Fischer-Cripps. Nanoindentatio, third ed., Springer, New York, (2011).
Google Scholar