[1]
A. J. DeMello , Control and detection of chemical reactions in microfluidic systems, Nature. 442 (2006) 394-402.
DOI: 10.1038/nature05062
Google Scholar
[2]
P.S. Dittrich, K. Tachikawa, A. Manz, Micro total analysis systems. Latest advancements and trends, Anal. Chem. 78 (2006) 3887-3907.
DOI: 10.1021/ac0605602
Google Scholar
[3]
K. W. Oh, C. H. Ahn, A review of microvalves, J. Micromench. Microeng. 16 (2006) 13-39.
Google Scholar
[4]
D. Juncker, H. Schmid, U. Drechsler, et al., Autonomous microfluidic capillary system, Anal. Chem. 74 (2002) 6139–6144.
DOI: 10.1021/ac0261449
Google Scholar
[5]
T.M. Squires, S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Rev. Mod. Phys. 77 (2005) 977–1026.
DOI: 10.1103/revmodphys.77.977
Google Scholar
[6]
T. Vestad, D. W. M. Marr, J. Oakey, Flow control for capillary-pumped microuidic systems, J. Micromech. Microeng. 14 (2004) 1503-1506.
DOI: 10.1088/0960-1317/14/11/010
Google Scholar
[7]
P. Novo, F. Volpetti, V. Chu, et al., Control of sequential fluid delivery in a fully autonomous capillary microfluidic device, Lab Chip. 13 (2013) 641-645.
DOI: 10.1039/c2lc41083d
Google Scholar
[8]
M. Zimmmermann, P. Hunziker, E. Delamarche, Valves for autonomous capillary systems, Biomed Microdevices. 11 (2009) 1-8.
Google Scholar
[9]
M. Zimmmermann, H. Schmid, P. Hunziker, E. Delamarche, Capillary pumps for autonomous capillary systems, Lab Chip. 5 (2007) 119-125.
DOI: 10.1039/b609813d
Google Scholar
[10]
C.H. Ahn, J.W. Choi, G. Beaucage, et al., Disposable smart lab on a chip for point-of-care clinical diagnostics, Proceedings of the IEEE. 92 (2004) 154-173.
DOI: 10.1109/jproc.2003.820548
Google Scholar
[11]
M.I. Mohammed, E. Abraham, M.P.Y. Desmulliez, Rapid laser prototyping of valves for microfluidic autonomous systems, J. Micromech. Microeng. 23 (2013) 1-9.
DOI: 10.1088/0960-1317/23/3/035034
Google Scholar
[12]
A. H. C. Ng, U. Uddayasankar, A. R. Wheeler, Immunoassays in microfluidic systems, Anal. Bioanal. Chem. 397 (2010) 991–1007.
DOI: 10.1007/s00216-010-3678-8
Google Scholar
[13]
J. Hong, J. B. Edel, A. J. Demello, Micro-and nanofluidic systems for high-throughput biological screening, Drug Discovery Today. 14 (2009)134–146.
DOI: 10.1016/j.drudis.2008.10.001
Google Scholar
[14]
M. M. Sanchez, S. Miserere, A. Merkoci, Nanomaterials and lab-on-a-chip technologies, Lab Chip. 12 (2012) 1932–(1943).
DOI: 10.1039/c2lc40063d
Google Scholar
[15]
E. Eteshola, D. Leckband, Development and characterization of an ELISA assay in PDMS microfluidic channels, Sens. Actuators, B. 72 (2001) 129–133.
DOI: 10.1016/s0925-4005(00)00640-7
Google Scholar
[16]
S. C. Tadic, G. Dernick, D. Juncker, et al., High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems, Lab Chip. 4 (2004) 563–569.
DOI: 10.1039/b408964b
Google Scholar
[17]
P. Novo, D. M. F. Prazeres, V. Chu et al., Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes, Lab Chip. 11 (2011) 4063–4071.
DOI: 10.1039/c1lc20362b
Google Scholar