[1]
Bozchalooi I S, Liang M. Enhancement of the signals collected by oil debris sensors[C]/American Control Conference, 2008. IEEE, 2008: 2810-2815.
DOI: 10.1109/acc.2008.4586919
Google Scholar
[2]
Du L, Zhe J. A high throughput inductive pulse sensor for online oil debris monitoring[J]. Tribology International, 2011, 44(2): 175-179.
DOI: 10.1016/j.triboint.2010.10.022
Google Scholar
[3]
Zhang H, Chon C H, Pan X, et al. Methods for counting particles in microfluidic applications[J]. Microfluidics and nanofluidics, 2009, 7(6): 739-749.
Google Scholar
[4]
Du L, Zhe J. A high throughput inductive pulse sensor for online oil debris monitoring[J]. Tribology International, 2011, 44(2): 175-179.
DOI: 10.1016/j.triboint.2010.10.022
Google Scholar
[5]
Zhang H, Huang W, Jin J, et al. Debris Detection in Hydraulic Oil Using a Microfluidic Inductive Pulse Device[C]/ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012: 51-57.
DOI: 10.1115/mnhmt2012-75171
Google Scholar
[6]
FAN H, ZHANG Y, LI Z, et al. Study on magnetic characteristic of ferromagnetic wear debris in inductive wear debris sensor[J]. Tribology, 2009, 29(5): 452-457.
Google Scholar
[7]
TUCKER J E, GALIE T R, SCHULTZ A, et al. LASERNET fines optical wear debris monitor: a navy shipboard evaluation of CBM enabling technology[C]. 54th Mach Fail Prev Technol Proc , 2000: 191.
Google Scholar
[8]
Zhang H P, Huang W, Zhang Y D, et al. Design of the microfluidic chip of oil detection[J]. Applied Mechanics and Materials, 2012, 117: 517-520.
Google Scholar
[9]
YAN H, ZHANG Y. The Design of an On-line Monitoring Sensor of Wear Mental Particals and the Analysis of Its Characteristic[J]. Journal of Transcluction Technology, 2002, 4: 014.
Google Scholar
[10]
Du L, Zhe J. Parallel sensing of metallic wear debris in lubricants using undersampling data processing[J]. Tribology International, 2012, 53: 28-34.
DOI: 10.1016/j.triboint.2012.04.005
Google Scholar
[11]
Zhang X, Zhang H, Sun Y, et al. Research on the Output Characteristics of Microfluidic Inductive Sensor[J]. Journal of Nanomaterials, 2014, (2014).
Google Scholar
[12]
Gui L, Ren C L. Exploration and evaluation of embedded shape memory alloy (SMA) microvalves for high aspect ratio microchannels[J]. Sensors and Actuators A: Physical, 2011, 168(1): 155-161.
DOI: 10.1016/j.sna.2011.03.038
Google Scholar
[13]
ZHANG H P, ZHANG X M, GUO L. Design of the oil detection microfluidic chip[J]. Chinese Journal of Scientific Instrument, 2013, 34(4): 762-767.
Google Scholar
[14]
Song Y, Li M, Yang J, et al. Capacitive detection of living microalgae in a microfluidic chip[J]. Sensors and Actuators B: Chemical, 2014, 194: 164-172.
DOI: 10.1016/j.snb.2013.12.057
Google Scholar