Fluid Dynamic Analysis on Solar Heating Error of Radiosonde MEMS Humidity Measurement

Article Preview

Abstract:

The dry bias of MEMS humidity sensor induced by solar radiation heating seriously affects the accuracy of the relative humidity (RH) measurement. To solve this problem, this paper presents a novel numerical analysis method for the error correction of RH based on computational fluid dynamics (CFD). Firstly, considering the solar radiation, the distribution of temperature field of MEMS humidity sensor is simulated from the ground to 32km altitude by using CFD soft under the boundary condition of fluid-solid coupled heat transfer. Secondly, the numerical analysis model of RH is put forward for solar radiation dry bias (SRDB) correction based on the working principle of the MEMS capacitive humidity sensor and the definition of RH. The results of numerical analysis show that the error of RH caused by solar radiation is nonlinearly increased with the altitude. Meanwhile the errors decrease with the reflectivity of sensor or of solder point increase. The simulation data also indicate that the SRDB can be reduced by improving the reflectivity of sensor or of solder point, adopting the substrate material with high thermal conductivity or choosing the suitable thickness of sensor. However, the SRDB should be corrected, for it still is more than 20% under the low atmospheric pressure. In this paper, the method based on fluid dynamics simulation provides a new way to correct the error of radiosonde MEMS humidity measurement caused by solar radiation heating.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

761-765

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. A. Wick, P. J. Neiman, F. M. Ralph, T. M. Hamill, Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models, Wea. Forecasting, 28(2013)1337-1352.

DOI: 10.1175/waf-d-13-00025.1

Google Scholar

[2] W. P. Elliott, R. J. Ross, Effects on climate records of changes in national weather service humidity processing procedures, J. Climate, 11(1998)2424-2436.

DOI: 10.1175/1520-0442(1998)011<2424:eocroc>2.0.co;2

Google Scholar

[3] R. Posada, E. García-Ortega, J. L. Sánchez, L. López, Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport, Atom. Res., 122(2013)174-182.

DOI: 10.1016/j.atmosres.2012.10.018

Google Scholar

[4] Z. Z. Liu, M. Li, W. K. Zhong, M. S. Wong, An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques, J. Geodrn., 72(2013)86-94.

DOI: 10.1016/j.jog.2013.09.002

Google Scholar

[5] L. M. Miloshevich, A. Paukkunen, H. Vömel, S. J. Oltmans, Development and validation of a time-lag correction for vaisala radiosonde humidity measurements, J. Atoms. Ocean. Tech., 21(2004)1305-1327.

DOI: 10.1175/1520-0426(2004)021<1305:davoat>2.0.co;2

Google Scholar

[6] E. Campmany, J. Bech, J. Rodríguez-Marcos, Y. Sola, J. Lorente, A comparison of total precipitable water measurement from radiosonde and sunphotometers, Atom. Res., 97(2010)385-392.

DOI: 10.1016/j.atmosres.2010.04.016

Google Scholar

[7] A. Koulali, D. Ouazar, O. Bock, A. Fadil, Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosonde and NWP models over Morocco, Atom. Res., 104-105(2012)273-291.

DOI: 10.1016/j.atmosres.2011.11.002

Google Scholar

[8] J. H. Wang, L. Y. Zhang, A. G. Dai, Radiation dry bias correction of vaisala RS92 humidity data and its impacts on historical radiosonde data, J. Atmos. Ocean. Tech., 30(2013)197-214.

DOI: 10.1175/jtech-d-12-00113.1

Google Scholar

[9] H. Vömel, H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, J. A. Diaz, Radiation dry bias of the vaisala RS92 humidity sensor, J. Atmos. Ocean. Tech., 24(2007)953-963.

DOI: 10.1175/jtech2019.1

Google Scholar

[10] X. L. Mao, S. R. Xiao, Q. Q. Liu, M. Li, J. H. Zhang. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement, Acta phys. sin., 14(2014)144701.

Google Scholar

[11] F. Guichard, D. Parsons, E. Miller, Thermodynamic and radiative impact of the correction of sounding humidity bias in tropics, J. Climate, 13(2000)3611-3624.

DOI: 10.1175/1520-0442(2000)013<3611:tariot>2.0.co;2

Google Scholar