Structure of Nanocrystalline Nickel Prepared by Powder Metallurgy

Article Preview

Abstract:

Nanocrystaline nickel was prepared by selective leaching technology. Consequently, the powder was compacted by spark plasma sintering method. This process is suitable due to its high heating rates, which leads to relatively low thermal exposition of compacted material. The dependence of structure of compacted material on preparation conditions is described in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-107

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Vollath, Nanoparticles – Nanocomposites, Nanomaterials: An Introduction for Beginners Wiley-VCH Verlag GmbH, Germany, 2013, Chapter 3.

Google Scholar

[2] Adlim, Preparations and application of metal nanoparticles. Indo. J. Chem 6 (1) (2006) 1-10.

Google Scholar

[3] D. Vojtech, Study of nano-crystalline metals prepared by selective chemical leaching, Manufacturing technology 12, (2012) 292-296.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/2/292

Google Scholar

[4] S. Rusz et al., Increase of efficiency of the ECAP technology at grain refinement of the alloy AlMn1Cu. Archives of Materials Science and Engineering 34 (1) (2008) 52-56.

Google Scholar

[5] Information on http: /en. wikipedia. org/wiki/Severe_plastic_deformation (31/08/2013).

Google Scholar

[6] D. Vojtěch, Prášková metalurgie jako metoda zpracování hliníkových odpadů s vysokými obsahy železa, Strojírenská technologie 17, (2012) 127-132 (in Czech).

Google Scholar

[7] A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys, Materials Science and Engineering A 375 – 377(2004) 16–30.

DOI: 10.1016/j.msea.2003.10.159

Google Scholar

[8] M. Galano et al., Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature, Journal of Alloys and Compounds 495 (2010) 372–376.

DOI: 10.1016/j.jallcom.2009.10.208

Google Scholar

[9] A. Michalcová et al., Structure and mechanical properties of AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method, International Journal of Materials Research 101 (2) (2010) 307-309.

DOI: 10.3139/146.110274

Google Scholar

[10] K. Tapan et al., Complex-Shaped Metal Nanoparticles, Wiley-Verlag, 1. Edition, Weinheim, Germany, (2012).

Google Scholar

[11] A.R. Tao et al., Shape Control of Colloidal Metal Nanocrystals. Small 4, (2008). p.310 – 325.

Google Scholar

[12] P. Zhenmeng et al., Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property, NanoToday 4 (2009) 143–164.

DOI: 10.1016/j.nantod.2008.10.010

Google Scholar

[13] R. Sardar et al., Gold nanoparticles: Past, present, and future, Langmuir 25 (2009) 13840-13851.

DOI: 10.1021/la9019475

Google Scholar

[14] Information on http: /water. usgs. gov/wrri/08grants/progress/2008RI75B. pdf (21/06/2012).

Google Scholar

[15] M. Tokita, Spark Plasma Sintering (SPS) Method, Systems, and Applications. Handbook of Advanced Ceramics, 2nd ed., Academic Press: Oxford, 2013, Chapter 11. 2. 3, p.1149–1177.

DOI: 10.1016/b978-0-12-385469-8.00060-5

Google Scholar

[16] Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science 41 (3) (2006), 763-777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[17] G.F. Taylor, Apparatus for making hard metal compositions US Patent 1, 896, 854 (1993).

Google Scholar

[18] K. Inoue, Electric discharge sintering US Patent 3, 241, 956 (1966).

Google Scholar

[19] M. Tokita, Trends in advanced SPS spark plasma sintering systems and technology, Journal of the Society of Powder Technology 30 (11) (1993) 790-804.

Google Scholar