[1]
S. Sun, Q. Liu, M. Brandt, M. Janardhana, G. Clarck, Microstructure and mechanical properties of laser cladding repair of AISI 4340 steel. In. Proceedings of the 28th International Conference of Aeronautic Sciences. Brisbane, Australia (2012).
Google Scholar
[2]
S. Sun, Y. Durandent, M. Brandt, Correlation between melt pool temperature and clad formation in pulsed and continuous wawe ND: YAG laser cladding of Stellite 6, in: Proceedings of the 1st Pacific International Conference on Application of Lasers and Optics, Melbourne, Australia (2004).
DOI: 10.2351/1.5056117
Google Scholar
[3]
I. Hemmati, V. Ocelík, J. Th.M. DeHosson, Dilution effectsinlasercladding of Ni–Cr–B–Si–C hardfacing alloys, Materials Letters 84 (2012) 69–72.
DOI: 10.1016/j.matlet.2012.06.054
Google Scholar
[4]
G. Habedank et al, Laser beam cladding of steel with high power diode lasers, in: Proceedings of WLT conference on lasers in manufacturing, Munich, (2003).
Google Scholar
[5]
X. Guojian, M. Kutsuna, Z. Liu, K. Yamada, Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel. Surface and Coatings Technology 201 (2006) 1138-1144.
DOI: 10.1016/j.surfcoat.2006.01.040
Google Scholar
[6]
K. Mahmood et all, Material efficient laser cladding for corrosion resistance, in: Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics ICALEO, Miami, (2011).
DOI: 10.2351/1.5062312
Google Scholar
[7]
A. Virose, K.F. Kobayashi, Formation of hybrid clad layers by laser processing, ISIJ International 35 (1995) 757-763.
DOI: 10.2355/isijinternational.35.757
Google Scholar