Microstructure of Cr2N-11Ag Nanocomposite Thin Film Deposited on Vanadis 6 Tool Steel

Article Preview

Abstract:

Cr2N-Ag nanocomposite thin films, containing 11 wt.% Ag solid lubricant, were deposited on substrates made of Cr-V ledeburitic tool steel Vanadis 6 by reactive magnetron sputtering at a deposition temperature of 500 °C, using pure Cr and Ag targets, in a composite low pressure Ar/N2 atmosphere. The films are composed of Cr2N-matrix and Ag particles. The films have an average thickness of 4.7 μm. They grew in a columnar manner, but, individual silver agglomerates were visible along the columnar crystals, also. The average size of silver agglomerates lies well below 50 nm. Annealing of the films at temperatures below the deposition temperature do not changed composition of films, but induce higher precipitation of silver particles on the surface of films at the temperatures 300 and 400°C. On the other hand, film annealed at 500°C manifested more remarkable Ag-redistribution, being represented by the decrease in population density of Ag-particles on the surface. The key parameter for transport Ag lubricants from Cr2N matrix to the surface is the working temperature. Cr2N-Ag films could be used for specific tribological applications through proper investigation of the working temperature and conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-128

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Aouadi, B. Luster, P. Kohli, C. Muratore, A.A. Voevodin, Progress in the development of adaptive nitride-based coatings for high temperature tribological application, Surf. Coat. Technol. 204 (2009) 962-968.

DOI: 10.1016/j.surfcoat.2009.04.010

Google Scholar

[2] C. Muratore, J.J. Hu, A.A. Voevodin, Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications, Thin Solid Films 515 (2007) 3638-3643.

DOI: 10.1016/j.tsf.2006.09.051

Google Scholar

[3] H. C. Barshilia, M.S. Prakash, A. Jain, K.S. Rajam, Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films, Vacuum 77 (2005) 169-179.

DOI: 10.1016/j.vacuum.2004.08.020

Google Scholar

[4] P. Basnyat, B. Luster, Z. Kertzman, S. Stadler, P. Kohli, S. Aouadi, J. Xu, S.R. Mishra, O.L. Eryilmaz, A. Erdemir, Mechanical and tribological properties of CrAlN-Ag self-lubricating films, Surf. Coat. Techn. 202 (2007) 1011-1016.

DOI: 10.1016/j.surfcoat.2007.05.088

Google Scholar

[5] S.M. Aouadi, A. Bohnhoff, M. Sodergren, D. Mihut, S.L. Rohde, J. Xu, S.R. Mishra, Tribological investigation of zirconium nitride/silver nanocomposite structures, Surf. Coat. Techn. 201 (2006) 418-422.

DOI: 10.1016/j.surfcoat.2005.11.135

Google Scholar

[6] C.P. Mulligan, D. Gall, CrN-Ag self-lubricating hard coatings, Surf. Coat. Techn. 200 (2005) 1495-1500.

DOI: 10.1016/j.surfcoat.2005.08.063

Google Scholar

[7] C.P. Mulligan, T.A. Blanchet, D. Gall, CrN-Ag nanocomposite coatings: Effect of growth temperature on the microstructure, Surf. Coat Techn. 203 (2008) 584-587.

DOI: 10.1016/j.surfcoat.2008.06.052

Google Scholar

[8] C.P. Mulligan, P.A. Papi, D. Gall, Ag transport in CrN-Ag nanocomposite coatings, Thin Solid Films 520 (2012) 6774-6779.

DOI: 10.1016/j.tsf.2012.06.082

Google Scholar

[9] C.P. Mulligan, T.A. Blanchet, D. Gall, Control of lubricant transport by a CrN diffusion barrier layer during high-temperature sliding of a CrN-Ag composite coating, Surf. Coat. Techn. 205 (2010) 1350-1355.

DOI: 10.1016/j.surfcoat.2010.07.071

Google Scholar

[10] P. Jurci, I. Dlouhy, Coating of Cr-V ledeburitic steel with CrN containing a small addition of Ag, Applied Surface Science 257 (2011) 10581-10589.

DOI: 10.1016/j.apsusc.2011.07.054

Google Scholar

[11] P. Jurci, S. Krum, Self-lubricating thin films for tool steels, Materials Engineering 19 (2012) 64-70.

Google Scholar

[12] J. Bohovicova, S. Krum, M. Hudakova, P. Jurci, Coating of tool steels with CrN enriched with silver, in: Metal 2012, Tanger Ltd., Ostrava, 2012, pp.918-924.

Google Scholar

[13] P. Bilek, P. Jurci, M. Hudakova, J. Bohovicova, J. Sobotova, CrAg7N nanocomposite coatings deposited of Cr-V ledeburitic steel, in: Metal 2013, Tanger Ltd., Ostrava, 2013, pp.959-964.

DOI: 10.1016/j.wear.2015.03.019

Google Scholar

[14] P. Bilek, P. Jurci, M. Hudakova, M. Pasak, M. Kusy, J. Bohovicova, Cr2N-7Ag nanocomposite thin films deposited on vanadis 6 tool steel, Applied Surface Science (2014). http: /dx. doi. org/10. 1016/j. apsusc. 2014. 03. 044.

DOI: 10.1016/j.apsusc.2014.03.044

Google Scholar

[15] H. Köstenbauer, G.A. Fontalvo, J. Keckes, C, Mitterer. Intrinsic stresses and stress relaxation in TiN/Ag multilayer coatings during thermal cycling, Thin Solid Films 516 (2008), 1920-(1924).

DOI: 10.1016/j.tsf.2007.08.059

Google Scholar

[16] M. Beger, P. Jurci, P. Grgac, S. Meciar, M. Kusy, L. Hornik, CrxNy coatings prepared by magnetron sputtering method, Metallic Materials 51 (2013), 1-10.

DOI: 10.4149/km_2013_1_1

Google Scholar

[17] C. Muratore, A.A. Voevodin, J.J. Hu, J.S. Zabinski, Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C, Wear 261 (2006), 797-805.

DOI: 10.1016/j.wear.2006.01.029

Google Scholar