Determination of Mechanical Adhesion Energy of Thermal Oxide Scales on Steel Produced from Medium and Thin Slabs Using Tensile Test

Article Preview

Abstract:

The mechanical adhesion of thermal oxide scales formed on industrial hot-rolled steel strips produced through the electric-arc-furnace route was studied. The samples as-received steel were prepared with the specific shape fitting to the micro-tensile machine in the SEM chamber for observation of surface failure during the test. It was found that oxide transverse cracking and scale spallation are observed. This paper also presented a theoretical model for evaluate adhesion energy from strain and stress values at the first spallation. It was found that the oxide scales on the medium slab exhibited high mechanical adhesion energy. This might be due to the existence of oxide contained Si at steel-scale interfaces. It can promote adhesive interactions between steel-scale interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-110

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Y Chan, W.Y.D. Yuen, ISIJ Inter. 45 (2005) 52-59.

Google Scholar

[2] Y. -L Yang, C. -H. Yang, S. -N. Lin, C. -H. Chen, W. -T. Tsai, Mater. Che. Phy. 112 (2008) 566-571.

Google Scholar

[3] A. Segawa, Mater Sci Forum. 696 (2011) 150-155.

Google Scholar

[4] S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Corros. Sci. 87 (2014) 101-110.

Google Scholar

[5] J. Mougin, M. Dupeux, L. Antoni, A. Galerie, Mater. Sci. Eng. A. 359 (2003) 44-51.

Google Scholar

[6] A. Galerie, F. Toscan, E. N'Dah, K. Przybylski, Y. Wouters, M. Dupeux, Mater. Sci. Forum. 461-464 (2004) 631-638.

Google Scholar

[7] F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, A. Galerie, Mater. Sci. Forum. 461-464 (2004) 705-712.

DOI: 10.4028/www.scientific.net/msf.461-464.705

Google Scholar

[8] S. Chandra-ambhorn, T. Nilsonthi, Y. Madi, A. Galerie, Key Eng. Mater. 410-411 (2009) 187-193.

DOI: 10.4028/www.scientific.net/kem.410-411.187

Google Scholar

[9] S. Chandra-ambhorn, T. Somphakdee, W. Chandra-ambhorn, Mater. Sci. Forum. 696 (2011) 156-161.

DOI: 10.4028/www.scientific.net/msf.696.156

Google Scholar

[10] K. Ngamkham, S. Niltawach, S. Chandra-ambhorn, Key Eng. Mater. 462-463 (2011) 407-412.

DOI: 10.4028/www.scientific.net/kem.462-463.407

Google Scholar

[11] S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Oxid. Met. 80 (2013) 61-72.

DOI: 10.1007/s11085-013-9370-6

Google Scholar

[12] T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxid. Met. 79 (2013) 325-335.

DOI: 10.1007/s11085-012-9356-9

Google Scholar

[13] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Mater. Corros. 62 (2011) 616-622.

Google Scholar

[14] W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Oxid. Met. 79 (2013) 529-540.

DOI: 10.1007/s11085-013-9379-x

Google Scholar

[15] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxid. Met. 81 (2014) 315-329.

DOI: 10.1007/s11085-013-9432-9

Google Scholar

[16] S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Mater. Sci. Tech. 23 (2007) 497-501.

DOI: 10.1179/174328407x168964

Google Scholar

[17] H.E. Evans, Inter. Mater. Rev. 40 (1995) 1-40.

Google Scholar

[18] S. Taniguchi, K. Yamamoto, D. Megumi, T. Shibata, Mater. Sci. Eng. A. 308 (2001) 250-257.

Google Scholar

[19] T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Steel Res. Inter. (2012) 987-990.

Google Scholar