Study on Different Mechanisms of Gastric Damage after Oral Administration of Titanium Dioxide Nano- and Microparticles

Article Preview

Abstract:

The study was performed with male Wistar rats who individually received nano (NPs) or fine (FPs) titanium dioxide (TiO2) particles with an attractive food for 7 days. Two doses of TiO2 NPs (200 and 400 mg/kg) and one dose of TiO2 FPs (200 mg/kg) were used. The macroscopic status of the gastric mucosa as well as the pro-and antioxidant activity of the adherent mucus layer were examined. Our experiments showed that a chronic (7-day) oral administration of TiO2 nanoor microparticles increased the area of erosive lesions and the amount of mucosal hemorrhages with respect to control. However, the damage mechanisms in the group “TiO2 FPs 200 mg/kg” were different from those in the groups “TiO2 NPs 200 mg/kg” and “TiO2 NPs 400 mg/kg”. The oxidative damage of glycoproteins occurred in the gastric mucus of animals who received TiO2 NPs; this led to degradation of the adherent mucus layer and deterioration of its protective properties. Therewith, a dose-dependent reaction was not observed at the indicated doses of TiO2 NPs. The oxidative damage of glycoproteins was not found in the gastric mucus of animals who received TiO2 FPs; erosive lesions and mucosal hemorrhages could be induced by TiO2 FPs as the mechanical and chemical agent that does not provoke oxidative stress at the indicated dose. Our study demonstrated that the use of TiO2 in any form for increasing the attractivity of foodstuffs can be harmful for the digestive tract.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

447-453

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] NIOSH. National Institute for Occupational Safety and Health; 2011. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. Publication Number 2011-160. http: /www. cdc. gov/niosh/docs/2011-160.

DOI: 10.26616/nioshpub2011160

Google Scholar

[2] H. Shi, R. Magaye, V. Castranova, J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data, Part. Fibre Toxicol. 6 (2013) 15.

DOI: 10.1186/1743-8977-10-15

Google Scholar

[3] Y. Duan, J. Liu, L. Ma, Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice, Biomaterials. 5 (2010) 894–899.

DOI: 10.1016/j.biomaterials.2009.10.003

Google Scholar

[4] A. E. Nel, T. Xia, L. Madler, and N. Li, Toxic potential of materials at the nanolevel, Science. 5761 (2006) 622–627.

DOI: 10.1126/science.1114397

Google Scholar

[5] I. Iavicoli, V. Leso, A. Bergamaschi, Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of In Vivo Studies, J. Nanomat., (2012) Article ID 964381, 36 pages.

DOI: 10.1155/2012/964381

Google Scholar

[6] M. Ortlieb, White Giant or White Dwarf? Particle Size Distribution Measurements of TiO2, GIT Lab. J. Eur. 14 (2010) 42–43.

Google Scholar

[7] N. Sadrieh, A. M. Wokovich, N. V. Gopee, Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles, Toxicol. Sci. 115 (2010) 156–166.

DOI: 10.1093/toxsci/kfq041

Google Scholar

[8] P. Jania, D. McCarthya, A.T. Florence, Titanium dioxide particle uptake from the rat GI tract and translocation to systemic organs after oral administration, Int. J. Pharm. 105 (1994) 157–168.

DOI: 10.1016/0378-5173(94)90461-8

Google Scholar

[9] A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol. 46 (2012) 2242–2250.

DOI: 10.1021/es204168d

Google Scholar

[10] J. Wang, G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, G. Jia, Y. Gao, B. Li, J. Sun, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicol. Lett. (168) 2007 176–185.

DOI: 10.1016/j.toxlet.2006.12.001

Google Scholar

[11] Q. Bu, G. Yan, P. Deng, F. Peng, H. Lin, Y. Xu, Z. Cao, T. Zhou, A. Xue, Y. Wang, NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration, Nanotechnology. 21 (2010) 125105.

DOI: 10.1088/0957-4484/21/12/125105

Google Scholar

[12] R. Hu, X. Gong, Y. Duan, N. Li, Y. Che, Y. Cui, M. Zhou, C. Liu, H. Wang, F. Hong, Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles, Biomaterials. 31 (2010) 8043–8050.

DOI: 10.1016/j.biomaterials.2010.07.011

Google Scholar

[13] V.A. Grigorieva, O.B. Zayeva, N.A. Krivova, Comparative Study of the Biological Efficacy of Tita-nium Dioxide Nano- and Microparticles, Adv. Mat. Res. 1085 (2015) 357-362.

DOI: 10.4028/www.scientific.net/amr.1085.357

Google Scholar

[14] M.C. Lomer, R.P. Thompson, J.J. Powell, Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease, Proc. Nutr. Soc. 61(1) (2002) 123-130.

DOI: 10.1079/pns2001134

Google Scholar

[15] H. Sinnecker, T. Krause, S. Koelling, I. Lautenschläger, A. Frey, The gut wall provides an effective barrier against nanoparticle uptake. Beilstein J Nanotechnol. 5 (2014) 2092-2101.

DOI: 10.3762/bjnano.5.218

Google Scholar

[16] Ch. Muller, T.K.Y. Lee and M.A. Montaño, Improved Chemiluminescence Assay for Measuring Antioxidant Capacity of Seminal Plasma, in: L. Barnard, K. I. Aston (Eds), Spermatogenesis : Methods and Protocols, Humana Press, New York, 2012, p. pp.363-376.

DOI: 10.1007/978-1-62703-038-0_31

Google Scholar

[17] W. Hoffmann, Regeneration of the gastric mucosa and its glands from stem cells, Curr Med Chem. 15(29) (2008) 3133-3144.

DOI: 10.2174/092986708786848587

Google Scholar

[18] A. Melekoğlu, T. Güven and H. Türker, Ultrastructural Effects of Titanium Dioxide on Epithelial Cells of Small Intestine of Mice, Int. Res. J. Biological Sci. 2(6) (2013) 1-7.

Google Scholar

[19] M.C. Botelho, C. Costa, S. Silva, S. Costa, A. Dhawan, P.A. Oliveira, J.P. Teixeira, Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro, Biomed. Pharmacother. 68(1) (2014) 59-64.

DOI: 10.1016/j.biopha.2013.08.006

Google Scholar

[20] R.K. Shukla, A. Kumar, A.K. Pandey, S.S. Singh, A. Dhawan, Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells, J. Biomed. Nanotechnol. 7 (2011) 100–101.

DOI: 10.1166/jbn.2011.1221

Google Scholar

[21] J.R. Gurr, A.S. Wang, C.H. Chen, K.Y. Jan, Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells, Toxicology. 213 (2005) 66–73.

DOI: 10.1016/j.tox.2005.05.007

Google Scholar

[22] M. Geiser, B. Rothen-Rutishauser, N. Kapp, Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Envir. Health Persp. 113(11) (2005) 1555–1560.

DOI: 10.1289/ehp.8006

Google Scholar

[23] C. Mühlfeld, M. Geiser, N. Kapp, P. Gehr, and B. Rothen-Rutishauser, Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the relative deposition index,: evidence for clearance through microvasculature, Part. Fibre Toxicology. 4 (2007).

DOI: 10.1186/1743-8977-4-7

Google Scholar

[24] R.A. Cone, Barrier properties of mucus, Adv. Drug Deliv. Rev. 61(2) (2009) 75-85.

Google Scholar

[25] T. Uchino, H. Tokunaga, M. Ando, H. Utsumi, Quantitative determination of OH radical generation and its cytotoxicity induced by TiO(2)-UVA treatment, Toxicol. in Vitro. 16 (2002) 629–635.

DOI: 10.1016/s0887-2333(02)00041-3

Google Scholar

[26] J. Wang, N. Li, L. Zheng, S. Wang, Y. Wang, X. Zhao, Y. Duan, Y. Cui, M. Zhou, J. Cai, P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2, Biol. Trace Elem. Res. 140 (2011) 186–197.

DOI: 10.1007/s12011-010-8687-0

Google Scholar

[27] J.E. Fishman, G. Levy, V. Alli, S. Sheth, Q. Lu, E.A. Deitch, Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure, Am. J. Physiol. Gastrointest. Liver Physiol. 304(1) (2013).

DOI: 10.1152/ajpgi.00170.2012

Google Scholar

[28] I.A. Brownlee, J. Knight, P.W. Dettmar, J.P. Pearson, Action of reactive oxygen species on colonic mucus secretions, Free Radic. Biol. Med. 43(5) (2007) 800-808.

DOI: 10.1016/j.freeradbiomed.2007.05.023

Google Scholar

[29] C.E. Cross, B. Halliwell, A. Allen, Antioxidant Protection: A Function of Tracheobronchial and Gastrointestinal Mucus, Lancet. 323 (8390) (1984) 1328–1330.

DOI: 10.1016/s0140-6736(84)91822-1

Google Scholar

[30] H. Selye, Stress and disease, Science. 122 (1955) 625–631.

Google Scholar