Bimodal Fluorescent and Magnetic Nanoparticles Based on Carbon Quantum Dots and Metal-Carbon Nanocomposites for Bio-Applications

Abstract:

Article Preview

The simultaneous combination of optical and magnetic properties of nanoparticles would greatly benefit in vivo disease diagnosis as well as in situ monitoring of cell in cell culture. The most promising application of magnetic particles in biomedicine is MRI contrast enhancement and magnetic hyperthermia. Another important thing is the determination of exact localization of nanoparticles in the cell culture that can be defined by e.g. optical way. In our investigation we used the iron nanoparticles encapsulated in carbon as a magnetic component and carbon quantum dots as an optical labels to provide the photostability and fluorescence in a wide range of wavelengths. In order to avoid the fluorescence quenching in bimodal particles the optical and magnetic components should be separated by insulator layer. To create the optimal bimodal nanoparticles for this purpose the non-typical configuration of nanocomposites was realized, namely, a fluorescent core was separated from the coated magnetic particles by silicon dioxide matrix. Finally, it was shown that these bimodal nanocomposites demonstrate the high magnetic properties, good visualized ability and low toxicity for living cells as well.

Info:

Periodical:

Edited by:

Prof. Irina Kurzina and Dr. Anna Godymchuk

Pages:

454-461

Citation:

A. Minin et al., "Bimodal Fluorescent and Magnetic Nanoparticles Based on Carbon Quantum Dots and Metal-Carbon Nanocomposites for Bio-Applications", Key Engineering Materials, Vol. 683, pp. 454-461, 2016

Online since:

February 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] S.N. Tabatabaei, H. Girouard, A.S. Carret, S. Martel, Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J. of Contr. Release. 206 (2015), 49–57.

DOI: https://doi.org/10.1016/j.jconrel.2015.02.027

[2] M.B. Gawande, s A. Velhinho, I.D. Nogueira, C.A.A. Ghumman, O.M.N.D. Teodoro, P. S. Branco, A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol. Rsc Advances. 2(15) (2012).

DOI: https://doi.org/10.1039/c2ra20955a

[3] K.S. Martirosyan, C. Dannangoda, E. Galstyan, D. Litvinov, Screen-printing of ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides, J. of App. Physics, 111(9) (2012), 094311.

DOI: https://doi.org/10.1063/1.4711097

[4] J. Yang, F. Zhang, W. Li, D. Gu, D. Shen, J. Fan, D. Zhao, Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chem. Comm, 50(6) (2014), 713-715.

DOI: https://doi.org/10.1039/c3cc47813k

[5] A.E. Ermakov, M.A. Uimin, E.S. Lokteva, A.A. Mysik, S.A. Kachevskii, A.O. Turakulova, V.V. Lunin, The synthesis, structure, and properties of carbon-containing nanocomposites based on nickel, palladium, and iron, Russian J. of Phys. Chem. A, 83(7) (2009).

DOI: https://doi.org/10.1134/s0036024409070243

[6] V.R. Galakhov, S.N. Shamin, E.M. Mironova, M.A. Uimin, A.Y. Yermakov, D.W. Boukhvalov, Electronic structure and resonant X-ray emission spectra of carbon shells of iron nanoparticles, JETP letters, 96(11) (2013), 710-713.

DOI: https://doi.org/10.1134/s0021364012230075

[7] P.S. Postnikov, M.E. Trusova, T.A. Fedushchak, M.A. Uimin, A.E. Ermakov, V.D. Filimonov, Aryldiazonium tosylates as new efficient agents for covalent grafting of aromatic groups on carbon coatings of metal nanoparticles, Nanotechnologies in Russia, 5(7) (2010).

DOI: https://doi.org/10.1134/s1995078010070037

[8] J. Yan, M.C. Estevez, J.E. Smith, K. Wang, X. He, L. Wang, W. Tan, Dye-doped nanoparticles for bioanalysis, Nano Today, 2(3) (2007), 44-50.

DOI: https://doi.org/10.1016/s1748-0132(07)70086-5

[9] N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, C. Fan, The cytotoxicity of cadmium-based quantum dots, Biomaterials, 33(5) (2012), 1238-1244.

[10] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano letters, 12(2) (2012), 844-849.

DOI: https://doi.org/10.1021/nl2038979

[11] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging, Nano letters, 13(6) (2013), 2436-2441.

DOI: https://doi.org/10.1021/nl400368v

[12] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun., 47(24) (2011), 6858-6860.

DOI: https://doi.org/10.1039/c1cc11122a

[13] O. Kedem, W. Wohlleben, I. Rubinstein, Distance-dependent fluorescence of tris (bipyridine) ruthenium (ii) on supported plasmonic gold nanoparticle ensembles. Nanoscale, 6(24) (2014), 15134-15143.

DOI: https://doi.org/10.1039/c4nr04237a

[14] Eue Soon Jang, et al., Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe, Pharmaceutical research, 31. 12 (2014), 3371-3378.

DOI: https://doi.org/10.1007/s11095-014-1426-z

[15] P.J. Goutam, D.K. Singh, P.K. Iyer, Photoluminescence quenching of poly (3-hexylthiophene) by carbon nanotubes, The J. of Phys. Chem., 116(14) (2012), 8196-8201.

DOI: https://doi.org/10.1021/jp300115q

[16] C. MingaLi, One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black, J. of Mat. Chem., 22(18) (2012), 8764-8766.

DOI: https://doi.org/10.1039/c2jm30658a

[17] B. Unger, H. Jancke, M. Hahnert, H. Stade, The early stages of the sol-gel processing of TEOS, J. of Sol-Gel Science and Technology, 2(1-3) (1994), 51-56.

DOI: https://doi.org/10.1007/bf00486212

[18] A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Aberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency, J. of the American Chem. Society, 135(4) (2013), 1438-1444.

DOI: https://doi.org/10.1021/ja309812z

[19] Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., Li, G. (2004). Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. J. of the American Chem. Society, 126(1), 273-279.

DOI: https://doi.org/10.1021/ja0380852

[20] J.H. Lee, S.P. Sherlock, M. Terashima, H. Kosuge, Y. Suzuki, A. Goodwin, H. Dai, High‐contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals, Magnetic Resonance in Medicine, 62(6) (2009), 1497-1509.

DOI: https://doi.org/10.1002/mrm.22132

[21] N. Chekina, D. Horak, P. Jendelova, M. Trchova, M.J. Benes, M. Hruby, E. Sykova, Fluorescent magnetic nanoparticles for biomedical applications. J. of Materials Chem, 21(21) (2011), 7630-7639.

DOI: https://doi.org/10.1039/c1jm10621j

[22] H. Andersson, T. Baechi, M. Hoechl, C. Richter, Autofluorescence of living cells, J. of microscopy, 191 (1998), 1-7.

DOI: https://doi.org/10.1046/j.1365-2818.1998.00347.x