Bimodal Fluorescent and Magnetic Nanoparticles Based on Carbon Quantum Dots and Metal-Carbon Nanocomposites for Bio-Applications

Article Preview

Abstract:

The simultaneous combination of optical and magnetic properties of nanoparticles would greatly benefit in vivo disease diagnosis as well as in situ monitoring of cell in cell culture. The most promising application of magnetic particles in biomedicine is MRI contrast enhancement and magnetic hyperthermia. Another important thing is the determination of exact localization of nanoparticles in the cell culture that can be defined by e.g. optical way. In our investigation we used the iron nanoparticles encapsulated in carbon as a magnetic component and carbon quantum dots as an optical labels to provide the photostability and fluorescence in a wide range of wavelengths. In order to avoid the fluorescence quenching in bimodal particles the optical and magnetic components should be separated by insulator layer. To create the optimal bimodal nanoparticles for this purpose the non-typical configuration of nanocomposites was realized, namely, a fluorescent core was separated from the coated magnetic particles by silicon dioxide matrix. Finally, it was shown that these bimodal nanocomposites demonstrate the high magnetic properties, good visualized ability and low toxicity for living cells as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

454-461

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.N. Tabatabaei, H. Girouard, A.S. Carret, S. Martel, Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J. of Contr. Release. 206 (2015), 49–57.

DOI: 10.1016/j.jconrel.2015.02.027

Google Scholar

[2] M.B. Gawande, s A. Velhinho, I.D. Nogueira, C.A.A. Ghumman, O.M.N.D. Teodoro, P. S. Branco, A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol. Rsc Advances. 2(15) (2012).

DOI: 10.1039/c2ra20955a

Google Scholar

[3] K.S. Martirosyan, C. Dannangoda, E. Galstyan, D. Litvinov, Screen-printing of ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides, J. of App. Physics, 111(9) (2012), 094311.

DOI: 10.1063/1.4711097

Google Scholar

[4] J. Yang, F. Zhang, W. Li, D. Gu, D. Shen, J. Fan, D. Zhao, Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chem. Comm, 50(6) (2014), 713-715.

DOI: 10.1039/c3cc47813k

Google Scholar

[5] A.E. Ermakov, M.A. Uimin, E.S. Lokteva, A.A. Mysik, S.A. Kachevskii, A.O. Turakulova, V.V. Lunin, The synthesis, structure, and properties of carbon-containing nanocomposites based on nickel, palladium, and iron, Russian J. of Phys. Chem. A, 83(7) (2009).

DOI: 10.1134/s0036024409070243

Google Scholar

[6] V.R. Galakhov, S.N. Shamin, E.M. Mironova, M.A. Uimin, A.Y. Yermakov, D.W. Boukhvalov, Electronic structure and resonant X-ray emission spectra of carbon shells of iron nanoparticles, JETP letters, 96(11) (2013), 710-713.

DOI: 10.1134/s0021364012230075

Google Scholar

[7] P.S. Postnikov, M.E. Trusova, T.A. Fedushchak, M.A. Uimin, A.E. Ermakov, V.D. Filimonov, Aryldiazonium tosylates as new efficient agents for covalent grafting of aromatic groups on carbon coatings of metal nanoparticles, Nanotechnologies in Russia, 5(7) (2010).

DOI: 10.1134/s1995078010070037

Google Scholar

[8] J. Yan, M.C. Estevez, J.E. Smith, K. Wang, X. He, L. Wang, W. Tan, Dye-doped nanoparticles for bioanalysis, Nano Today, 2(3) (2007), 44-50.

DOI: 10.1016/s1748-0132(07)70086-5

Google Scholar

[9] N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, C. Fan, The cytotoxicity of cadmium-based quantum dots, Biomaterials, 33(5) (2012), 1238-1244.

DOI: 10.1016/j.biomaterials.2011.10.070

Google Scholar

[10] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano letters, 12(2) (2012), 844-849.

DOI: 10.1021/nl2038979

Google Scholar

[11] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging, Nano letters, 13(6) (2013), 2436-2441.

DOI: 10.1021/nl400368v

Google Scholar

[12] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun., 47(24) (2011), 6858-6860.

DOI: 10.1039/c1cc11122a

Google Scholar

[13] O. Kedem, W. Wohlleben, I. Rubinstein, Distance-dependent fluorescence of tris (bipyridine) ruthenium (ii) on supported plasmonic gold nanoparticle ensembles. Nanoscale, 6(24) (2014), 15134-15143.

DOI: 10.1039/c4nr04237a

Google Scholar

[14] Eue Soon Jang, et al., Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe, Pharmaceutical research, 31. 12 (2014), 3371-3378.

DOI: 10.1007/s11095-014-1426-z

Google Scholar

[15] P.J. Goutam, D.K. Singh, P.K. Iyer, Photoluminescence quenching of poly (3-hexylthiophene) by carbon nanotubes, The J. of Phys. Chem., 116(14) (2012), 8196-8201.

DOI: 10.1021/jp300115q

Google Scholar

[16] C. MingaLi, One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black, J. of Mat. Chem., 22(18) (2012), 8764-8766.

DOI: 10.1039/c2jm32560h

Google Scholar

[17] B. Unger, H. Jancke, M. Hahnert, H. Stade, The early stages of the sol-gel processing of TEOS, J. of Sol-Gel Science and Technology, 2(1-3) (1994), 51-56.

DOI: 10.1007/bf00486212

Google Scholar

[18] A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Aberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency, J. of the American Chem. Society, 135(4) (2013), 1438-1444.

DOI: 10.1021/ja309812z

Google Scholar

[19] Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., Li, G. (2004). Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. J. of the American Chem. Society, 126(1), 273-279.

DOI: 10.1021/ja0380852

Google Scholar

[20] J.H. Lee, S.P. Sherlock, M. Terashima, H. Kosuge, Y. Suzuki, A. Goodwin, H. Dai, High‐contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals, Magnetic Resonance in Medicine, 62(6) (2009), 1497-1509.

DOI: 10.1002/mrm.22132

Google Scholar

[21] N. Chekina, D. Horak, P. Jendelova, M. Trchova, M.J. Benes, M. Hruby, E. Sykova, Fluorescent magnetic nanoparticles for biomedical applications. J. of Materials Chem, 21(21) (2011), 7630-7639.

Google Scholar

[22] H. Andersson, T. Baechi, M. Hoechl, C. Richter, Autofluorescence of living cells, J. of microscopy, 191 (1998), 1-7.

DOI: 10.1046/j.1365-2818.1998.00347.x

Google Scholar