In Vivo Evaluation of Strontium-Containing Nanostructured Carbonated Hydroxyapatite

Article Preview

Abstract:

Bone tissue is a composite material that has hydroxyapatite (HA) as its main inorganic phase component. The biological apatites have low crystallinity and contain cationic and anionic substitutions in their structure, which differ from the available synthetic ceramics. The purpose of this study is to evaluate the biocompatibility of nanostructured carbonated hydroxyapatite microspheres containing 5 wt% strontium (SrcHA) compared with the biocompatibility of carbonated hydroxyapatite (cHA), both synthesized at 37°C and non-sintered, used to control stoichiometric HA microspheres in subcutaneous tissue of mice. The biomaterials (BM) were characterized using X-ray Diffraction (XRD), Vibrational Spectroscopy in an Infrared Fourier Transform (VSIRFT) and Scanning Electron Microscopy (SEM). Forty five balb-C mice were randomly divided into four groups of 15 animals each: SrcHA, cHA, HA, and without material implantation (Sham group). All samples were histologically processed for descriptive evaluation of the biological effect. At each experimental period (1, 3 and 9 weeks), there was a higher biosorption of the tested biomaterials observed in contrast with the HA. The cHA group was the only group completely phagocytosed by macrophages and giant cells after 9 weeks. All biomaterials proved to be biocompatible, and the cHA and SrcHA 3% groups exhibited a faster bioabsorption in comparison with the control group. The doping of strontium did not cause a greater biological response after the 3 experimental periods.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K. Keiichi, K. Mitsunobu, S. Masafumi, D. Yutaka, S. Toshiaki, Induction of new bone by bFGF-loaded porous carbonate apatite implants in femur defects in rats, Clin. Oral Impl. Res. 20 (2009) 560-565.

DOI: 10.1111/j.1600-0501.2008.01676.x

Google Scholar

[2] T.M. Cestari, J.M. Granjeiro, G.F. Assis, G.P. Garlet, R. Taga, Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model, Clin Oral Implan Res. 20(2009) 340-350.

DOI: 10.1111/j.1600-0501.2008.01659.x

Google Scholar

[3] W.C. Tsai, C.J. Liao, C.T. Wu, C.Y. Liu, S.C. Lin, T.H. Young, S. S Wu, H. C Liu, Clinical result of sintered bovine hydroxyapatite bone substitute: analysis of the interface reaction between tissue and bone substitute, J Orthop Sci. 15(2010).

DOI: 10.1007/s00776-009-1441-9

Google Scholar

[4] T. Kasai, K. Sato, Y. Kanematsu, M. Shikimori, N. Kanematsu, Y. Doi, Bone Tissue Engineering Using Porous Carbonate Apatite and Bone Marrow Cells, The Journal of Craniofacial Surgery & Volume. 21(2010) 473-478.

DOI: 10.1097/scs.0b013e3181cfea6d

Google Scholar

[5] M.D. Calasans-Maia, A.M. Rossi, E.P. Dias, S.R.A. Santos, F.O. Áscoli1, J.M. Granjeiro, Stimulatory Effect on Osseous Repair of Zinc-substituted Hydroxyapatite: Histological Study in Rabbit's Tibia, Key Eng Mater. 361-363(2008) 1269-1272.

DOI: 10.4028/www.scientific.net/kem.361-363.1269

Google Scholar

[6] A. Porter, N. Patel, R. Brooks, S. Best, N. Rushton, W. Bonfield, Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants, Journal of Materials Science: Materials in Medicine. 16(2005) 899-907.

DOI: 10.1007/s10856-005-4424-1

Google Scholar

[7] J.V. Rau, S.N. Cesaro, D. Ferro, S.M. Barinov, J.V. Fadeeva, FTIR Study of Carbonate Loss from Carbon-ated Apatites in Wide Temperature Range, Journal of Biomedical Materials Research Part B: Applied Biomaterials. 71(2004) 441-447.

DOI: 10.1002/jbm.b.30111

Google Scholar

[8] E. Landi, A. Tampieri, G. Celotti, R. Langenati, M. San-dri, S. Sprio, Influence of Synthesis and Sintering Parameters on the Characteristics of Calcium Phosphate, Biomaterials. 26(2005) 2835.

DOI: 10.1016/j.biomaterials.2004.08.010

Google Scholar

[9] E. Landi, G. Celottia, G. Logroscinob, G. Tampieria, Carbonated hydroxyapatite as bone substitute, Journal of the European Ceramic Society. 23(2003) 2931–2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar

[10] R.Z. LeGeros, Calcium Phosphate-Based Osteoinductive Materials, Chem. Rev. 108(2008) 4742–4753.

DOI: 10.1021/cr800427g

Google Scholar

[11] M.L. Munar, K. Udoh, K. Ishikawa, S. Matsuya, M. Nakagawa, Effects of sintering temperature over 1, 300 ºC on the physical and compositional properties of porous hydroxyapatite foam, Dent Mater J. 25(2006) 51-58.

DOI: 10.4012/dmj.25.51

Google Scholar

[12] P. Marie, P. Ammann, G. Boivin, C. Rey, Mechanisms of action and therapeutic potential of strontium in bone, Calcif Tissue Int. 69(3)(2001) 121-129.

DOI: 10.1007/s002230010055

Google Scholar

[13] M.D. O'Donnell, Y. Fredholm, A. Rouffignac, R.G. Hill, Structural analysis of a series of strontium-substituted apatites, ActaBiomaterialia. (2008) 1455-1464.

DOI: 10.1016/j.actbio.2008.04.018

Google Scholar

[14] S. Handley-Sidhu S, J.C. Renshaw, P. Yong, R. Kerley, L.E. Macaskie, Nanocrystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions, Biotechnol Lett. 33(2011) 79-87.

DOI: 10.1007/s10529-010-0391-9

Google Scholar

[15] B. Li, X. Liao, L. Zheng, H. He, H. Wang, H. Fan, X. Zhang, Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. Materials Science and Engineering C. 32(2012) 929-936.

DOI: 10.1016/j.msec.2012.02.014

Google Scholar

[16] Y. Li, Q. Li, S. Zhu, E. Luo, J. Li, G. Feng, Y. Liao, J. Hu, The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats, Biomaterials. 31(2010) 9006-9014.

DOI: 10.1016/j.biomaterials.2010.07.112

Google Scholar

[17] S.G. Dahl, A.P., P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, D.P. Delmas, C. Christiansen, Incorporation and Distribution of Strontium in Bone, Bone. 28(2001) 446-453.

DOI: 10.1016/s8756-3282(01)00419-7

Google Scholar

[18] P. Ammann, V. Shen, B. Robin, Y. Mauras, J.P. Bonjour, R. Rizzoli, Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats, J Bone Miner Res. 19(2004) 2012-(2020).

DOI: 10.1359/jbmr.040906

Google Scholar

[19] M.D. Grynpas, E. Hamilton, R. Cheung, Y. Tsouderos, P. Deloffre, M. Hott, P.J. Marie, Strontium increases vertebral bone volume in rats at low dose that does not induce mineralization defect, Bone. 18(1996) 253-259.

DOI: 10.1016/8756-3282(95)00484-x

Google Scholar

[20] P.J. Marie, M. Hott, D. Modrowski,C. De Pollak, J. Guillemain, P. Deloffre, Y. Tsouderos, An uncoupling agent containing strontium prevents bone loss by depressing bone resorptionand maintaining bone formation in estrogen-deficient rats, J Bone Miner Res. 8(1993).

DOI: 10.1002/jbmr.5650080512

Google Scholar

[21] R. LeGeros, Calcium Phosphate-Based, Osteoinductive Materials, Chemical Reviews, 108(11) (2008) 4742-4753.

DOI: 10.1021/cr800427g

Google Scholar

[22] M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, Jamshidi Ahmad, Syntesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater 9(8) (2013) 7591-7621.

DOI: 10.1016/j.actbio.2013.04.012

Google Scholar

[23] R. Resende, G. Fernandes, A. Santos, A. Rossi, I. Lima, J.M. Granjeiro, M. Calasans-Maia, Long-term biocompatibility evaluation of 0. 5 % zinc containing hydroxyapatite in rabbits, J Mater Sci: Mater Med. 24(2013) 1455-1463.

DOI: 10.1007/s10856-013-4865-x

Google Scholar

[24] H. Saijo, U.I. Chung, K. Igawa, Y. Mori, D. Chikazu, M. Iino, T. Takato, Clinical application of artificial bone in the maxillofacial region, Journal of Artificial Organs. 11(4) (2008) 171-176.

DOI: 10.1007/s10047-008-0425-4

Google Scholar

[25] E. Landi, S. Sprio, M. Sandri, G. Celotti, A. Tampieri, Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications, Acta Biomaterialia. 4 (2008) 656-663.

DOI: 10.1016/j.actbio.2007.10.010

Google Scholar

[26] K. Keiichi, K. Mitsunobu, S. Masafumi, D. Yutaka, S. Toshiaki, Induction of new bone by bFGF-loaded porous carbonate apatite implants in femur defects in rats, Clin. Oral Impl. Res. 20(2009) 560-565.

DOI: 10.1111/j.1600-0501.2008.01676.x

Google Scholar

[27] A. Costa et al. Hidroxiapatita: Obtenção, caracterização e aplicações. Revista Eletrônica de Materiais e Processos 4(3) (2009) 29-38.

Google Scholar

[28] T. Narasaraju, D. Phebe, Some physico-chemical aspects of hydroxylapatite, Journal Of Materials Science. 31(1996) 1-21.

DOI: 10.1007/bf00355120

Google Scholar

[29] R.A. Ramli, R. Adnan, M.A. Bakar, S.M. Masudi, Synthesis and Characterisation of Pure Nanoporous Hydroxyapatite, Journal of Physical Science. 22 (2011) 25-37.

Google Scholar

[30] P. Habibovic, M. Juhl, S. Clyens, R. Martinetti, L. Dolcini, N. Theilgaard, C. Blitterswijk, Comparison of two carbonated apatite ceramics in vivo, ActaBiomaterialia. 6(2010) 2219-2226.

DOI: 10.1016/j.actbio.2009.11.028

Google Scholar

[31] C.P.G. Machado, A.V.B. Pintor, M.A.K.A. Gress, A.M. Rossi, J.M. Granjeiro, M. Calasans- Maia, Innov Implant J, BiomaterEsthet. 5(1) (2010) 9-14.

Google Scholar

[32] D. Reis et al, Multiparametric In Vitro Evaluation of Cytocompatibility of 1% Strontium-Containing Nanostructured Hydroxyapatite, Key Engineering Materials. (2014) 345.

DOI: 10.4028/www.scientific.net/kem.631.345

Google Scholar

[33] Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, Y. Iwayama, Sintered carbonate apatites as bioresorbable bone substitutes, J Biomed Mater Res. 39(1998) 603-610.

DOI: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7

Google Scholar

[34] C.T. Wong, Q.Z. Chen, W.W. Lu, J.C.Y. Leong, W.K. Chan, K.M.C. Cheung, K.D.K. Luk, Ultrastructure study of mineralization of a strontium-containing hydroxyapatite (Sr- HA) cement in vivo, J Biomed Mater Res A. 70(3) (2004) 428-435.

DOI: 10.1002/jbm.a.30097

Google Scholar

[35] J. Christoffersen, M.R. Christoffersen, N. Kolthoff, Effects of strontium ions on growth and dissolution of hydroxtapatite and on bone mineral detection, Bone. 20(1) (1997) 47-52.

DOI: 10.1016/s8756-3282(96)00316-x

Google Scholar

[36] D.G. Guo, K.W. Xu, X.Y. Zhao, Y. Han, Development of a strontium-containing hydroxyapatite bone cement, Biomaterials. 26 (19) (2005) 4073-4083.

DOI: 10.1016/j.biomaterials.2004.10.032

Google Scholar

[37] W. Xue, J.L. Moore, H.L. Hosick, S. Bose, A. Bandyopadhyay , W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics, J Biomed Mater Res A. 79(4) (2006) 804-814.

DOI: 10.1002/jbm.a.30815

Google Scholar

[38] H. Valiense, M. Barreto, R.F. Resende, A.T. Alves, A.M. Rossi, E. Mavropolos, J.M. Granjeiro, M.D. Calasans-Maia, In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits, J Biomed Mater Res Part B. 00B(2015).

DOI: 10.1002/jbm.b.33392

Google Scholar

[39] I. Cezar, G. Kammer, A.T. Alves, J. Calasans-Maia, M.A. Gress, A.M. Rossi, J.M. Granjeiro, M.D. Calasans-Maia, Standadized study of Carbonate Apatite as bone Substitute In Rabbit's Tibia, Key Eng Mater. (2012) 493-494, 242-246.

DOI: 10.4028/www.scientific.net/kem.493-494.242

Google Scholar

[40] H. Valiense, G.V.O. Fernandes, B. Moura, J. Calasans-Maia, A.T. Alves, A.M. Rossi, J.M. Granjeiro, M.D. Calasans-Maia, Effect of Carbonate-apatite on bone repair in non-critical size defect of rat calvaria, Key Eng Mater. (2012) 493-494, 258-262.

DOI: 10.4028/www.scientific.net/kem.493-494.258

Google Scholar

[41] E. Barros, J. Alvarenga, G.G. Alves, B. Canabarro, G. Fernandes, A.M. Rossi, J.M. Grajeiro, M.D. Calasans-Maia, In vivo and in vitro biocompatibility study of nanostructured carbonateapatite, Key Eng Mater. 493(4) (2012) 247-251.

DOI: 10.4028/www.scientific.net/kem.493-494.247

Google Scholar

[42] M. Hasegawa, Y. Doi, A. Uchida, Cell-mediated bioresorption of sintered carbonate apatite in rabbits, J. Bone Joint. Surg. Br. 85(1) (2003) 142-147.

DOI: 10.1302/0301-620x.85b1.13414

Google Scholar

[43] C.A.O. Ramires, A.M. Costa, J. Bettini, A.J. Ramires, M.H.P. da Silva, A.M. Rossi, Structural Properties of Nanoestructured Carbonate Apatites, Key Eng Mater. 396-398 (2009) 611-614.

DOI: 10.4028/www.scientific.net/kem.396-398.611

Google Scholar