[1]
K. Keiichi, K. Mitsunobu, S. Masafumi, D. Yutaka, S. Toshiaki, Induction of new bone by bFGF-loaded porous carbonate apatite implants in femur defects in rats, Clin. Oral Impl. Res. 20 (2009) 560-565.
DOI: 10.1111/j.1600-0501.2008.01676.x
Google Scholar
[2]
T.M. Cestari, J.M. Granjeiro, G.F. Assis, G.P. Garlet, R. Taga, Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model, Clin Oral Implan Res. 20(2009) 340-350.
DOI: 10.1111/j.1600-0501.2008.01659.x
Google Scholar
[3]
W.C. Tsai, C.J. Liao, C.T. Wu, C.Y. Liu, S.C. Lin, T.H. Young, S. S Wu, H. C Liu, Clinical result of sintered bovine hydroxyapatite bone substitute: analysis of the interface reaction between tissue and bone substitute, J Orthop Sci. 15(2010).
DOI: 10.1007/s00776-009-1441-9
Google Scholar
[4]
T. Kasai, K. Sato, Y. Kanematsu, M. Shikimori, N. Kanematsu, Y. Doi, Bone Tissue Engineering Using Porous Carbonate Apatite and Bone Marrow Cells, The Journal of Craniofacial Surgery & Volume. 21(2010) 473-478.
DOI: 10.1097/scs.0b013e3181cfea6d
Google Scholar
[5]
M.D. Calasans-Maia, A.M. Rossi, E.P. Dias, S.R.A. Santos, F.O. Áscoli1, J.M. Granjeiro, Stimulatory Effect on Osseous Repair of Zinc-substituted Hydroxyapatite: Histological Study in Rabbit's Tibia, Key Eng Mater. 361-363(2008) 1269-1272.
DOI: 10.4028/www.scientific.net/kem.361-363.1269
Google Scholar
[6]
A. Porter, N. Patel, R. Brooks, S. Best, N. Rushton, W. Bonfield, Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants, Journal of Materials Science: Materials in Medicine. 16(2005) 899-907.
DOI: 10.1007/s10856-005-4424-1
Google Scholar
[7]
J.V. Rau, S.N. Cesaro, D. Ferro, S.M. Barinov, J.V. Fadeeva, FTIR Study of Carbonate Loss from Carbon-ated Apatites in Wide Temperature Range, Journal of Biomedical Materials Research Part B: Applied Biomaterials. 71(2004) 441-447.
DOI: 10.1002/jbm.b.30111
Google Scholar
[8]
E. Landi, A. Tampieri, G. Celotti, R. Langenati, M. San-dri, S. Sprio, Influence of Synthesis and Sintering Parameters on the Characteristics of Calcium Phosphate, Biomaterials. 26(2005) 2835.
DOI: 10.1016/j.biomaterials.2004.08.010
Google Scholar
[9]
E. Landi, G. Celottia, G. Logroscinob, G. Tampieria, Carbonated hydroxyapatite as bone substitute, Journal of the European Ceramic Society. 23(2003) 2931–2937.
DOI: 10.1016/s0955-2219(03)00304-2
Google Scholar
[10]
R.Z. LeGeros, Calcium Phosphate-Based Osteoinductive Materials, Chem. Rev. 108(2008) 4742–4753.
DOI: 10.1021/cr800427g
Google Scholar
[11]
M.L. Munar, K. Udoh, K. Ishikawa, S. Matsuya, M. Nakagawa, Effects of sintering temperature over 1, 300 ºC on the physical and compositional properties of porous hydroxyapatite foam, Dent Mater J. 25(2006) 51-58.
DOI: 10.4012/dmj.25.51
Google Scholar
[12]
P. Marie, P. Ammann, G. Boivin, C. Rey, Mechanisms of action and therapeutic potential of strontium in bone, Calcif Tissue Int. 69(3)(2001) 121-129.
DOI: 10.1007/s002230010055
Google Scholar
[13]
M.D. O'Donnell, Y. Fredholm, A. Rouffignac, R.G. Hill, Structural analysis of a series of strontium-substituted apatites, ActaBiomaterialia. (2008) 1455-1464.
DOI: 10.1016/j.actbio.2008.04.018
Google Scholar
[14]
S. Handley-Sidhu S, J.C. Renshaw, P. Yong, R. Kerley, L.E. Macaskie, Nanocrystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions, Biotechnol Lett. 33(2011) 79-87.
DOI: 10.1007/s10529-010-0391-9
Google Scholar
[15]
B. Li, X. Liao, L. Zheng, H. He, H. Wang, H. Fan, X. Zhang, Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. Materials Science and Engineering C. 32(2012) 929-936.
DOI: 10.1016/j.msec.2012.02.014
Google Scholar
[16]
Y. Li, Q. Li, S. Zhu, E. Luo, J. Li, G. Feng, Y. Liao, J. Hu, The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats, Biomaterials. 31(2010) 9006-9014.
DOI: 10.1016/j.biomaterials.2010.07.112
Google Scholar
[17]
S.G. Dahl, A.P., P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, D.P. Delmas, C. Christiansen, Incorporation and Distribution of Strontium in Bone, Bone. 28(2001) 446-453.
DOI: 10.1016/s8756-3282(01)00419-7
Google Scholar
[18]
P. Ammann, V. Shen, B. Robin, Y. Mauras, J.P. Bonjour, R. Rizzoli, Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats, J Bone Miner Res. 19(2004) 2012-(2020).
DOI: 10.1359/jbmr.040906
Google Scholar
[19]
M.D. Grynpas, E. Hamilton, R. Cheung, Y. Tsouderos, P. Deloffre, M. Hott, P.J. Marie, Strontium increases vertebral bone volume in rats at low dose that does not induce mineralization defect, Bone. 18(1996) 253-259.
DOI: 10.1016/8756-3282(95)00484-x
Google Scholar
[20]
P.J. Marie, M. Hott, D. Modrowski,C. De Pollak, J. Guillemain, P. Deloffre, Y. Tsouderos, An uncoupling agent containing strontium prevents bone loss by depressing bone resorptionand maintaining bone formation in estrogen-deficient rats, J Bone Miner Res. 8(1993).
DOI: 10.1002/jbmr.5650080512
Google Scholar
[21]
R. LeGeros, Calcium Phosphate-Based, Osteoinductive Materials, Chemical Reviews, 108(11) (2008) 4742-4753.
DOI: 10.1021/cr800427g
Google Scholar
[22]
M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, Jamshidi Ahmad, Syntesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater 9(8) (2013) 7591-7621.
DOI: 10.1016/j.actbio.2013.04.012
Google Scholar
[23]
R. Resende, G. Fernandes, A. Santos, A. Rossi, I. Lima, J.M. Granjeiro, M. Calasans-Maia, Long-term biocompatibility evaluation of 0. 5 % zinc containing hydroxyapatite in rabbits, J Mater Sci: Mater Med. 24(2013) 1455-1463.
DOI: 10.1007/s10856-013-4865-x
Google Scholar
[24]
H. Saijo, U.I. Chung, K. Igawa, Y. Mori, D. Chikazu, M. Iino, T. Takato, Clinical application of artificial bone in the maxillofacial region, Journal of Artificial Organs. 11(4) (2008) 171-176.
DOI: 10.1007/s10047-008-0425-4
Google Scholar
[25]
E. Landi, S. Sprio, M. Sandri, G. Celotti, A. Tampieri, Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications, Acta Biomaterialia. 4 (2008) 656-663.
DOI: 10.1016/j.actbio.2007.10.010
Google Scholar
[26]
K. Keiichi, K. Mitsunobu, S. Masafumi, D. Yutaka, S. Toshiaki, Induction of new bone by bFGF-loaded porous carbonate apatite implants in femur defects in rats, Clin. Oral Impl. Res. 20(2009) 560-565.
DOI: 10.1111/j.1600-0501.2008.01676.x
Google Scholar
[27]
A. Costa et al. Hidroxiapatita: Obtenção, caracterização e aplicações. Revista Eletrônica de Materiais e Processos 4(3) (2009) 29-38.
Google Scholar
[28]
T. Narasaraju, D. Phebe, Some physico-chemical aspects of hydroxylapatite, Journal Of Materials Science. 31(1996) 1-21.
DOI: 10.1007/bf00355120
Google Scholar
[29]
R.A. Ramli, R. Adnan, M.A. Bakar, S.M. Masudi, Synthesis and Characterisation of Pure Nanoporous Hydroxyapatite, Journal of Physical Science. 22 (2011) 25-37.
Google Scholar
[30]
P. Habibovic, M. Juhl, S. Clyens, R. Martinetti, L. Dolcini, N. Theilgaard, C. Blitterswijk, Comparison of two carbonated apatite ceramics in vivo, ActaBiomaterialia. 6(2010) 2219-2226.
DOI: 10.1016/j.actbio.2009.11.028
Google Scholar
[31]
C.P.G. Machado, A.V.B. Pintor, M.A.K.A. Gress, A.M. Rossi, J.M. Granjeiro, M. Calasans- Maia, Innov Implant J, BiomaterEsthet. 5(1) (2010) 9-14.
Google Scholar
[32]
D. Reis et al, Multiparametric In Vitro Evaluation of Cytocompatibility of 1% Strontium-Containing Nanostructured Hydroxyapatite, Key Engineering Materials. (2014) 345.
DOI: 10.4028/www.scientific.net/kem.631.345
Google Scholar
[33]
Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, Y. Iwayama, Sintered carbonate apatites as bioresorbable bone substitutes, J Biomed Mater Res. 39(1998) 603-610.
DOI: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7
Google Scholar
[34]
C.T. Wong, Q.Z. Chen, W.W. Lu, J.C.Y. Leong, W.K. Chan, K.M.C. Cheung, K.D.K. Luk, Ultrastructure study of mineralization of a strontium-containing hydroxyapatite (Sr- HA) cement in vivo, J Biomed Mater Res A. 70(3) (2004) 428-435.
DOI: 10.1002/jbm.a.30097
Google Scholar
[35]
J. Christoffersen, M.R. Christoffersen, N. Kolthoff, Effects of strontium ions on growth and dissolution of hydroxtapatite and on bone mineral detection, Bone. 20(1) (1997) 47-52.
DOI: 10.1016/s8756-3282(96)00316-x
Google Scholar
[36]
D.G. Guo, K.W. Xu, X.Y. Zhao, Y. Han, Development of a strontium-containing hydroxyapatite bone cement, Biomaterials. 26 (19) (2005) 4073-4083.
DOI: 10.1016/j.biomaterials.2004.10.032
Google Scholar
[37]
W. Xue, J.L. Moore, H.L. Hosick, S. Bose, A. Bandyopadhyay , W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics, J Biomed Mater Res A. 79(4) (2006) 804-814.
DOI: 10.1002/jbm.a.30815
Google Scholar
[38]
H. Valiense, M. Barreto, R.F. Resende, A.T. Alves, A.M. Rossi, E. Mavropolos, J.M. Granjeiro, M.D. Calasans-Maia, In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits, J Biomed Mater Res Part B. 00B(2015).
DOI: 10.1002/jbm.b.33392
Google Scholar
[39]
I. Cezar, G. Kammer, A.T. Alves, J. Calasans-Maia, M.A. Gress, A.M. Rossi, J.M. Granjeiro, M.D. Calasans-Maia, Standadized study of Carbonate Apatite as bone Substitute In Rabbit's Tibia, Key Eng Mater. (2012) 493-494, 242-246.
DOI: 10.4028/www.scientific.net/kem.493-494.242
Google Scholar
[40]
H. Valiense, G.V.O. Fernandes, B. Moura, J. Calasans-Maia, A.T. Alves, A.M. Rossi, J.M. Granjeiro, M.D. Calasans-Maia, Effect of Carbonate-apatite on bone repair in non-critical size defect of rat calvaria, Key Eng Mater. (2012) 493-494, 258-262.
DOI: 10.4028/www.scientific.net/kem.493-494.258
Google Scholar
[41]
E. Barros, J. Alvarenga, G.G. Alves, B. Canabarro, G. Fernandes, A.M. Rossi, J.M. Grajeiro, M.D. Calasans-Maia, In vivo and in vitro biocompatibility study of nanostructured carbonateapatite, Key Eng Mater. 493(4) (2012) 247-251.
DOI: 10.4028/www.scientific.net/kem.493-494.247
Google Scholar
[42]
M. Hasegawa, Y. Doi, A. Uchida, Cell-mediated bioresorption of sintered carbonate apatite in rabbits, J. Bone Joint. Surg. Br. 85(1) (2003) 142-147.
DOI: 10.1302/0301-620x.85b1.13414
Google Scholar
[43]
C.A.O. Ramires, A.M. Costa, J. Bettini, A.J. Ramires, M.H.P. da Silva, A.M. Rossi, Structural Properties of Nanoestructured Carbonate Apatites, Key Eng Mater. 396-398 (2009) 611-614.
DOI: 10.4028/www.scientific.net/kem.396-398.611
Google Scholar