In Vivo Evaluation of Zinc-Containing Nanostructured Carbonated Hydroxyapatite

Article Preview

Abstract:

The hydroxyapatite (HA) is a biocompatible and bioactive biomaterial used as bone substitute, however, the high crystallinity of HA and consequently its low solubility may be a limitation for its clinical use. In order to improve the biosorption of HA, the partial substitutions in the chemical structure and doping with small amounts of impurities have been study. The objective of this study was to evaluate the biocompatibility of 3% Zinc-containing nanostructured carbonated hydroxyapatite (ZncHA) compared with the carbonated hydroxyapatite (cHA), both synthesized at 37°C and non-sintered, using as control the stoichiometric HA microspheres in subcutaneous of mice. The X-ray Diffraction (XRD) and Vibrational Spectroscopy in Infra Red Fourier Transform (FTIR) were used to characterize the biomaterials. In vivo test was performed in BALB/c mice by implanting of HA, cHA and ZncHA spheres in the subcutaneous tissue for 1, and 9 weeks (n=5). The negative control consisted in incision without material implantation (Sham group). The samples were histological processed to descriptive analysis of biological effect. The microscopic analysis showed a similar granulation reaction between groups at the first experimental period. In 9 weeks there was a time dependent biosorption of cHA compared with other groups. In conclusion, the biomaterials tested were biocompatible and cHA group showed a significant biosorption in comparison with HA and ZncHA groups. The doping of zinc did not influence the biocompatibility of biomaterial, however, change the biosorption response

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Jebahi, M. Saoudi, R. Badraoui, T. Rebai, H. Oudadesse, Z. Ellouz, H. Keskese, A. E1. Feki, H. El Feki, Biologic Response to Carbonated Hydroxyapatite Associated with Orthopedic Device: Experimental Study in a Rabbit Model, Korean J Pathol. 46 (2012).

DOI: 10.4132/koreanjpathol.2012.46.1.48

Google Scholar

[2] J.W. Park, J.H. Jang, S.R. Bae, C.H. An, J.Y. Suh, Bone formation with various bone graft substitutes in critical-sized rat calvarial defec, Clin Oral Implants Res. 20 (2009) 372–378.

DOI: 10.1111/j.1600-0501.2008.01602.x

Google Scholar

[3] A. Grandjean-Laquerriere, P. Laquerriere, E. Jallot, J.M. Nedelec, M. Guenounou, D. Laurent-Maquin, T.M. Phillips, Influence of the zinc concentration of sol–gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro, Biomaterials. 27 (2006).

DOI: 10.1016/j.biomaterials.2006.01.024

Google Scholar

[4] R.F.B. Resende, G.V.O. Fernandes, S.R.A. Santos, A.M. Rossi, I. Lima, J.M. Granjeiro, M Calasans-Maia, Long-term biocompatibility evaluation of 0. 5 % zinc containing hydroxyapatite in rabbits, J Mater Sci Mater Med. 24 (2013) 1455–1463.

DOI: 10.1007/s10856-013-4865-x

Google Scholar

[5] H.B. Valiense, A.T.N.N. Alves, E. Mavropoulus, M. Tanaka, A.M. Rossi, M. Barreto, J.M. Granjeiro, M.D. Calasans-Maia, In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits, J Biomed Mater Res Part B. 1 (2015).

DOI: 10.1002/jbm.b.33392

Google Scholar

[6] M.D. Calasans-Maia, J.A. Calasans-Maia, S. Santos, E. Mavropoulos, M. Farina, I. Lima, R.T. Lopes, A. Rossi, J.M. Granjeiro, Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure, Mater Sci Eng C. 41 (2014).

DOI: 10.1016/j.msec.2014.04.054

Google Scholar

[7] K . Sunouchi, K. Tsuru, M. Maruta, G. Kawachi, S. Matsuya, Y. Terada, K. Ishikawa, Fabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor, Dent Mater J. 31 (2012) 549-57.

DOI: 10.4012/dmj.2011-253

Google Scholar

[8] E. Mavropoulos, M. Hausen, A.M. Costa, S.R. Albuquerque, G.G. Alves, J.M. Granjeiro, A.M. Rossi, Biocompatibility of carbonated hydroxyapatite nanoparticles with Different crystallinities, Key Eng. Mater. 493-494 (2012) 331-336.

DOI: 10.4028/www.scientific.net/kem.493-494.331

Google Scholar

[9] J. Barralet, S. Best, W. Bonfield, Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration, J Biomed Mater Res. 41 (1998) 79-86.

DOI: 10.1002/(sici)1097-4636(199807)41:1<79::aid-jbm10>3.0.co;2-c

Google Scholar

[10] H.B. Valiense, G.V.O. Fernandes, B.S. Moura, J. A . Calasans-Maia, A.T.N.N. Alves, A.M. Rossi, J.M. Granjeiro, M.D. Calasans-Maia, Effect of carbonate-apatite on bone repair in non-critical size defect of rat calvaria, Key Eng Mater. 493 (2012).

DOI: 10.4028/www.scientific.net/kem.493-494.258

Google Scholar

[11] F. Miyaji, Y. Kono, Y. Suyama, Formation and structure of zinc-substituted calcium hydroxyapatite, Mater Res Bull. 40 (2005) 209–220.

DOI: 10.1016/j.materresbull.2004.10.020

Google Scholar

[12] Y. Tang, H.C. Chappell, M.T. Dove, R.J. Reeder, Y.J. Lee, Zinc incorporation into hydroxylapatite, J Biomed Mater Res Part B. 90 (2009) 886-893.

Google Scholar

[13] K.A. Gross, L. Komarovska, A. Viksna, Efficient zinc incorporation in hydroxyapatite through crystallization of an amorphous phase could extend the properties of zinc apatites, J Aust Ceram Soc. 49 (2013) 129–135.

Google Scholar

[30] T.J. Webster, C. Ergun, R.H. Doremus, R. Bizios, Hydroxyapatite with substituted magnesium, zinc, cadmium, and yttrium. II: Mechanisms of osteoblast adhesion, J. Biomed. Mater. Res. 59 (2002) 312–317.

DOI: 10.1002/jbm.1247

Google Scholar

[14] E. Mavropoulos, M.E. Rocha Leão, M.H.P. Silva, A.M. Rossi, Hydroxyapatite-alginate composite for lead removal in artificial gastric fluid, J Mater Res. 22 (2007) 3371-7.

DOI: 10.1557/jmr.2007.0419

Google Scholar

[15] ISO 10993-6: 2007 – Biological evaluation of medical devices - Part 6: Tests for local effects after implantation.

DOI: 10.2345/9781570206689.ch1

Google Scholar

[16] S. Liao, F. Watari, G. Xu, M. Ngiam, S. Ramakrishna, C.K. Chan, Morphological effects of variant carbonates in biomimetic hydroxyapatite, Mat Letters. 61 (2007) 3624–28.

DOI: 10.1016/j.matlet.2006.12.007

Google Scholar

[17] T.B. Schnaider, C. Souza, Aspectos Éticos da Experimentação Animal, Rev Bras Anestesiol. 53 (2003) 278 – 285.

DOI: 10.1590/s0034-70942003000200014

Google Scholar

[18] V.S. Komlev, I.V. Fadeeva ,N.A. Gurinb, E.S. Kovaleva, V.V. Smirnov, N.A. Gurinb, S.M. Barinov, Effect of the concentration of carbonate groups in a carbonate hydroxyapatite ceramic on its in vivo behavior, Inorganic Materials. 45 (2009) 329–334.

DOI: 10.1134/s0020168509030194

Google Scholar

[19] C.T. Zaman, A. Takeuchi, S. Matsuya, Q.H.M.S. Zaman, K. Ishikawa, Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite, Dent Mater J. 27 (2008) 710-715.

DOI: 10.4012/dmj.27.710

Google Scholar

[20] J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin Immunol. 20 (2008) 86–100.

Google Scholar

[21] W.F. Zambuzzi, R.C.D. Oliveira, F.L. Pereira, T.M. Cestari, R. Taga, J.M. Granjeiro, Rat subcutaneous tissue response to macrogranular porous anorganic bovine bone graft, Braz Dent J. 17 (2006) 274-278.

DOI: 10.1590/s0103-64402006000400002

Google Scholar

[22] M. Calasans-Maia, A.M. Rossi, E.P. Dias, S.R.A. Santo, F. Áscoli, J.M. Granjeiro, Stimulatory effect on osseous repair of zinc-substituted hydroxyapatite: histological study in Rabbit's Tibia, Key Eng Mat. 361-363 (2008) 1269-1272.

DOI: 10.4028/www.scientific.net/kem.361-363.1269

Google Scholar