Hollow Shells Development and Characterization for Cells Carrying Purpose

Article Preview

Abstract:

Bioceramics draw attention in bone tissue engineering field since their biomimetic properties regarding bone attribute. In this context, a concept of smart bioceramics granules made of Hydroxyapatite have been set up, enhancing surface area available to body fluids containing proteins and cell adhesion for bone forming respectively thanks to microporosities and macropore concavities. New “hollow shell” granules were developed and assessed by physico-chemical characterizations, in-vitro experiments and in-vivo implantation in comparison with classical round granules. This new original galenic formulation showed promising potential in cell carrying and osteoconduction matter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-242

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Christopher G (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg 84: 454-464.

DOI: 10.2106/00004623-200203000-00020

Google Scholar

[2] Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ journal of surgery 71: 354-361.

DOI: 10.1046/j.1440-1622.2001.02128.x

Google Scholar

[3] Dorozhkin SV (2002) A review on the dissolution models of calcium apatites. Progress in Crystal Growth and Characterization of Materials 44: 45-61.

DOI: 10.1016/s0960-8974(02)00004-9

Google Scholar

[4] LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clinical Orthopaedics and Related Research 395: 81.

DOI: 10.1097/00003086-200202000-00009

Google Scholar

[5] LeGeros R, Lin S, Rohanizadeh R, Mijares D, Legeros J, (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. Journal of Materials Science: Materials in Medicine 14: 201-209.

DOI: 10.4028/www.scientific.net/kem.240-242.473

Google Scholar

[6] Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements: Injury 31: D37-D47.

DOI: 10.1016/s0020-1383(00)80022-4

Google Scholar

[7] Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19: 133-139.

DOI: 10.1016/s0142-9612(97)00180-4

Google Scholar

[8] Ripamonti U, Roden L (2010) Biomimetics for the induction of bone formation. Expert review of medical devices 7: 469-479.

DOI: 10.1586/erd.10.17

Google Scholar

[9] Habibovic P, Yuan H, Van Der Valk CM, Gert Meijer, Clemens A van Blitterswijk, Klass de Groot (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26: 3565-3575.

DOI: 10.1016/j.biomaterials.2004.09.056

Google Scholar

[10] Malard O, Gautier H, Daculsi G (2007) In Vivo Demonstration of 2 Types of Microporosity on the Kinetic of Bone Ingrowth and Biphasic Calcium Phosphate Bioceramics Resorption Key Engineering Materials 361-363: 1233-1236.

DOI: 10.4028/www.scientific.net/kem.361-363.1233

Google Scholar

[11] Bohner M, Baumgart F (2004) Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25: 3569-3582.

DOI: 10.1016/j.biomaterials.2003.10.032

Google Scholar

[12] Daculsi G, Layrolle P (2004) Osteoinductive Properties of Micro Macroporous Biphasic Calcium Phosphate Bioceramics. Key Engineering Materials 254-256: 1005-1008.

DOI: 10.4028/www.scientific.net/kem.254-256.1005

Google Scholar

[13] Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17: 31-35.

DOI: 10.1016/0142-9612(96)80752-6

Google Scholar

[14] Plank C, Eglin D, Fahy N, Sapet C, Borget P, van Osch G, Gentili C, Miramond T, Zöller K, Anton M (2012) Gene activated matrices for bone and cartilage regeneration in arthritis. European Journal of Nanomedicine 4: 17-32.

DOI: 10.1515/ejnm-2012-0001

Google Scholar

[15] Daculsi G (2015), Smart Scaffolds: the Future of Bioceramic, J Mater Sci: Mater Med (2015) 26: 154.

DOI: 10.1007/s10856-015-5482-7

Google Scholar