Development and Application of Bamboo Activated Carbons and their Potency as Adsorbent Material for Adsorbed Natural Gas (ANG); An Overview

Article Preview

Abstract:

Currently, the use of activated carbon (AC) increased significantly for the industrial sector, health, environment and agriculture. However, the commercial price of activated carbon is relatively expensive, especially for micro industries mainly due to high production costs. Additionally, it comes from non-renewable sources with limited availability. This prompted the researchers to study the production of AC from inexpensive precursors and renewable; one of which is made from bamboo. AC production can be done through a pyrolysis process followed by physical or chemical activation. Differences in raw materials and activation methods used can affect the characteristics and quality of activated carbon produced. This paper reviews the development and application of bamboo activated carbons in the life sectors and their potency for use as an adsorbent material for the absorbed natural gas (ANG).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-130

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. S. Patil and K. S. Kulkarni, Development of high surface area activated carbon from waste material, International Journal of Advanced Engineering and Studies (IJAERS). 1 (2012) 109-113.

Google Scholar

[2] F. O. Aramide, Simeon Ademola Ibitoye, I. O. Oladele, and J. O. Borode, Effects of carburization time and temperature on the mechanical properties of carburized mild steel, using activated carbon as carburizer, Materials Research. 12 (2009).

DOI: 10.1590/s1516-14392009000400018

Google Scholar

[3] S. Mahanim, I. W. Asma, J. Rafidah, E. Puad, and H. Shaharuddin, Production of activated carbon from industrial bamboo waste, Journal of Tropical Forest Science. 23 (2011) 417-424.

Google Scholar

[4] F. T. Ademiluyi and O. Braide, Effectiveness of Nigerian bamboo activated with different activating agents on the adsorption of BTX, J. Appl. Sci. Environ. Manage. 16 (2012) 267 - 273.

Google Scholar

[5] W. H. Cheung, S. S. Y. Lau, S. Y. Leung, A. W. M. Ip, and G. McKay, Characteristics of chemical modified activated carbons from bamboo scaffolding, Chinese Journal of Chemical Engineering. 20 (2012) 515-523.

DOI: 10.1016/s1004-9541(11)60213-9

Google Scholar

[6] A. O. Oyedun, K. -L. Lam, T. Gebreegziabher, H. K. M. Lee, and C. -W. Hui, Kinetic modelling and analysis of waste bamboo pyrolysis, Chemical Engineering Transactions. 29 (2012) 697-702.

Google Scholar

[7] X. Gu, Y. Wang, C. lai, J. Qiu, S. Li, Y. L. Huo, W. Martens, N. Mahmood, and S. Zhang, Microporous bamboo biochar for litium - sulfur battery, Nano Research. (2014) 1-14.

DOI: 10.1007/s12274-014-0601-1

Google Scholar

[8] X. Ma, H. Yang, L. Yu, Y. Chen, and Y. Li, Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation, Materials. 7 (2014) 4431- 4441.

DOI: 10.3390/ma7064431

Google Scholar

[9] T. Huang, Z. Qiu, D. Wu, and Z. Hu, Bamboo-based activated carbon @ MnO2 nanocomposites for flexible high-performance supercapacitor electrode materials, Int. J. Electrochem. Sci. 10 (2015) 6312 - 6323.

DOI: 10.1016/s1452-3981(23)06721-4

Google Scholar

[10] W. K. Koo, N. A. Gani, M. S. Shamsuddin, N. S. Subki, and M. A. Sulaiman, Comparison of wastewater treatment using activated carbon from bamboo and oil palm: an overview, Journal of Tropical and Resource Sustainable Science. 3 (2015) 54-60.

DOI: 10.47253/jtrss.v3i1.689

Google Scholar

[11] K. K. H. Choy, J. P. Barford, and G. McKay, Production of activated carbon from bamboo scaffolding waste - process design, evaluation and sensitivity analysis, Chemical Engineering Journal. 109 (2005) 147–165.

DOI: 10.1016/j.cej.2005.02.030

Google Scholar

[12] A. A. Awoyale, A. C. Eloka-Eboka, and O. A. Odubiyi, Production and experimental efficiency of activated carbon from local waste bamboo for waste water treatment, International Journal of Engineering and Applied Sciences. 3 (2013) 8-17.

Google Scholar

[13] J. G, Akpa, and C.G. J, Nmegbu, Adsorption of benzene on activated carbon from agricultural waste Materials, Research Journal of Chemical Sciences. 4 (2014) 30-34.

Google Scholar

[14] I. A. A. C. Esteves, M. S. S. Lopes, P. M. C. Nunes, and J. e. P. B. Mota, Adsorption of natural gas and biogas components on activated carbon, Separation and Purification Technology. 62 (2008) 281–296.

DOI: 10.1016/j.seppur.2008.01.027

Google Scholar

[15] K. Inomata, K. Kanazawa, Y. Urabe, H. Hosono, and T. Araki, Natural gas storage in activated carbon pellets without a binder, Carbon. 40 (2002) 87-93.

DOI: 10.1016/s0008-6223(01)00084-7

Google Scholar

[16] D. C. Azevedo, J. C. S. Araujo, M. Bastos-Neto, A. E. B. Torres, E. F. Jaguaribe, and C. L. Cavalcante, Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride, Microporous and Mesoporous Materials. 100 (2007).

DOI: 10.1016/j.micromeso.2006.11.024

Google Scholar

[17] K. Ramakrishnan and C. Namasivayam, Development and characteristics of activated carbons from jatropha husk, an agro industrial solid waste, by chemical activation methods J. Environ. Eng. Manage. 19 (2009) 173-178.

Google Scholar

[18] T. Zhang, W. P. Walawender, and L. Fan, Grain-based activated carbons for natural gas storage, Bioresource Technology. 101 (2010) 1983-(1991).

DOI: 10.1016/j.biortech.2009.10.046

Google Scholar

[19] J. Sreńscek-Nazzal, W. Kamińska, B. Michalkiewicz, and Z. C. Koren, Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses, Industrial Crops and Products. 47 (2013) 153-159.

DOI: 10.1016/j.indcrop.2013.03.004

Google Scholar

[20] A. Rijali and U. Malik, Pembuatan dan karakterisasi karbon aktif dari bambu betung dengan aktivasi menggunakan activating agent H2O, JOM Bidang Matematika dan Ilmu Pengetahuan Alam. 2 (2015) 102-107.

DOI: 10.24036/p.v10i2.112417

Google Scholar

[21] Q. -S. Liu, T. Zheng, P. Wang, and L. Guo, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Industrial Crops and Products 31 (2010) 233–238.

DOI: 10.1016/j.indcrop.2009.10.011

Google Scholar

[22] X. Ma, H. Yang, L. Yu, Y. Chen, and Y. Li, Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation, Materials. 7 (2014) 4431- 4441.

DOI: 10.3390/ma7064431

Google Scholar

[23] D. Lozano-Castello, J. Alcan˜iz-Monge, M. A. d. l. Casa-Lillo, D. Cazorla-Amoro´s, and A. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials, Fuel. 81 (2002) 1777-1803.

DOI: 10.1016/s0016-2361(02)00124-2

Google Scholar

[24] http: /drdiahkencana. wordpress. com.

Google Scholar