[1]
G.S. Buller, R.E. Warburton, S. Pellegrini, J.S. Ng, J.P.R. David, L.J.J. Tan, A. B Krysa, S. Cova, Single-photon avalanche diode detectors for quantum key distribution, IET Optoelectronics 1 (2007) 249-254.
DOI: 10.1049/iet-opt:20070046
Google Scholar
[2]
S. Cova, M. Ghioni, F. Zappa, A. Tosi, I. Rech, A. Gulinatti, S. Tisa, Single-photon avalanche detectors for quantum communications, Conf. Opt. Fiber Commun., Collocated Natl. Fiber Opt. Eng. Conf., OFC/NFOEC (2010).
DOI: 10.1364/ofc.2010.otuc2
Google Scholar
[3]
J. Zhang, R. Thew, C. Barreiro, H. Zbinden, Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes, Appl. Phys. Lett. 95 (2009) 091103.
DOI: 10.1063/1.3223576
Google Scholar
[4]
X.L. Liang, J.H. Liu, Q. Wang, D.B. Du, J. Ma, G. Jin, Z.B. Chen, J. Zhang, J. W. Pan, Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating, Rev. Sci. Instrum. 83 (2012) 083111.
DOI: 10.1063/1.4746291
Google Scholar
[5]
H. Weier, T. Schmitt-Manderbach, N. Regner, C. Kurtsiefer, H. Weinfurter, Free space quantum key distribution: Towards a real life application, Fortschritte Der Physik, 54 (2006) 840-845.
DOI: 10.1002/prop.200610322
Google Scholar
[6]
J.E. Nordholt, R.J. Hughes, G.L. Morgan, C.G. Peterson, C.C. Wipf, Present and future free-space quantum key distribution, Proc. SPIE Int. Soc. Opt. Eng. 4635 (2002) 116-126.
DOI: 10.1117/12.464085
Google Scholar
[7]
H. Dautet, P. Deschamps, B. Dion, A.D. MacGregor, D. MacSween, R.J. McIntyre, C. Trottier, P.P. Webb, Photon counting techniques with silicon avalanche photodiodes, Appl. Opt. 32 (1993) 3894-3900.
DOI: 10.1364/ao.32.003894
Google Scholar
[8]
A. Spinelli , A.L. Lacaita, Physics and numerical simulation of single photon avalanche diodes, IEEE Trans. Electron Devices 44 (1997) 1931-(1943).
DOI: 10.1109/16.641363
Google Scholar
[9]
M. Liu, X. Bai, C. Hu, X. Guo, J.C. Campbell, Z. Pan, M.M. Tashima, Low dark count rate and high single-photon detection efficiency avalanche photodiodes in Geiger-mode operation, IEEE Photonics Technol. Lett. 19 (2007) 378-380.
DOI: 10.1109/lpt.2007.891939
Google Scholar
[10]
S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detectors, Appl. Opt. 35 (1996) 1956-(1976).
DOI: 10.1364/ao.35.001956
Google Scholar
[11]
S. Cova, G. Ripamonti, A. Longoni, Active-quenching and gating circuits for single-photon avalanche diodes, IEEE Trans. Nucl. Sci. NS-29 (1981) 599-601.
DOI: 10.1109/tns.1982.4335917
Google Scholar
[12]
F. Zappa, M. Ghioni, S. Cova, C. Samori, A.C. Giudice, Integrated active-quenching circuit for single-photon avalanche diodes, IEEE Trans. Instrum. Meas. 49 (2000) 1167-1175.
DOI: 10.1109/19.893251
Google Scholar
[13]
N. Namekata, S. Sasamori, S. Inoue, 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiodes operated with a sine wave gating, Opt. Express 14 (2006) 10043-10049.
DOI: 10.1364/oe.14.010043
Google Scholar
[14]
J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, H. Zbinden, 2. 23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution, Proc. SPIE Int. Soc. Opt. Eng. 7681 (2010) 76810Z.
DOI: 10.1117/12.862118
Google Scholar
[15]
Z.L. Yuan, B.E. Kardynal, A.W. Sharpe, A.J. Shields, High speed single photon detection in the near infrared, Appl. Phys. Lett. 91 (2007) 041114.
DOI: 10.1063/1.2760135
Google Scholar