Plasma-Enhanced Atomic Layer Deposition of GaN Thin Film at Low Temperature

Article Preview

Abstract:

Polycrystalline GaN thin films were successfully grown at low temperature (250 °C) by plasma-enhanced atomic layer deposition with NH3, N2, N2/H2 gas mixture and trimethylgallium (TMG) as precusor. The growth rate, crystal structure, surface composition and the valence state of the corresponding element of the GaN thin films using different nitrogen sources were characterized and examined systematically via the spectroscopic ellipsometry, the x-ray diffractometer, the x-ray photoel-ectron spectrometer. It is showed that all the GaN thin films using different nitrogen sources were polycrystalline structure and the preffered orientation were mainly (100). The films using N2 and N2/H2 gas mixture had a higher crystal quality than films using NH3. The GPC (growth rate per cycle) would increase with the increase of the N2 flow rate. The films using a suitable ratio of N2/H2 flow rate had not only a high GPC but a good crystal quality. The ratios of Ga/N element of the films using N2/H2 gas mixture were approximated to 1:1, it would increase with the ratio of the N2/H2 flow rate in the gas mixture, which is showing much effect of the ratios of N2/H2 flow rate on the nitrogen content of the thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

907-914

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Khan, J.N. Kuznia, D.T. Olson and R. Kaplan: J. Appl. Phys., Vol. 73 (1993) No. 6, p.3108.

Google Scholar

[2] Z.H. Liu: Study on the properites of GaN grown by hydride vapour phase epitaxy (Ph.D., Nanjing University, China 2012), p.5.

Google Scholar

[3] H.M. Manasevit, F.M. Erdmann and W.I. Simpson: J. Electrochem. Soc., Vol. 118 (1971) No. 11, p.1864.

Google Scholar

[4] J. Chuna, Y.K. Hwang, Y.S. Choib, J.J. Kima, T. Jeongc, J.H. Baekc, H.C. Kob and S.J. Park: Scr. Mater., Vol. 77 (2014) No. 4, p.13.

Google Scholar

[5] S. Yoshida, S. Misawa and S. Gonda: Appl. Phys. Lett., Vol. 42 (1983) No. 5, p.427.

Google Scholar

[6] T. Hirvikorpi, M. Vähä-Nissi, J. Nikkola, AliHarlin and Maarit- Karppinen: Surf. Coat. Technol., Vol. 205 (2011) No. 21, p.5088.

DOI: 10.1016/j.surfcoat.2011.05.017

Google Scholar

[7] Steven M. George: Chem. Rev., Vol. 110 (2010) No. 1, p.111.

Google Scholar

[8] Riikka L. Puurunen: J. Appl. Phys., Vol. 97 (2005) No. 12, p.121301.

Google Scholar

[9] M. Leskel and M. Ritala: Angew. Chem. Int. Ed., Vol. 42 (2003) No. 45, p.5548.

Google Scholar

[10] N.H. Karam, T. Parodos, P. Colter, D. McNulty, W. Rowland, J. Schetzina, N. ElMasry and Salah M. Bedair: Appl. Phys. Lett., Vol. 67 (1995) No. 1, p.94.

DOI: 10.1063/1.115519

Google Scholar

[11] C. Ozgit, I. Donmez, M. Alevli and N. Biyikli: J. Vac. Sci. Technol. A, Vol. 30 (2012) No. 1, p. 01A124.

Google Scholar

[12] C. Ozgit-Akgun, E. Goldenberg, A.K. Okyay and N. Biyikli: J. Mater. Chem. C, Vol. 12 (2014) No. 12, p.2123.

Google Scholar

[13] C. Ozgit, I. Donmez, M. Alevli and N. Biyikli: Thin Solid Films, Vol. 7 (2012) No. 7, p.2750.

DOI: 10.1016/j.tsf.2011.11.081

Google Scholar

[14] M. Alevli, C. Ozgit, I. Donmez and N. Biyikli: J. Cryst. Growth, Vol. 1 (2011) No. 1, p.51.

Google Scholar

[15] S Bolat, C Ozgit-Akgun, B Tekcan, N Biyikli and AK Okyay: Appl. Phys. Lett., Vol. 24 (2014) No. 24, p.243505.

DOI: 10.1063/1.4884061

Google Scholar

[16] C. Ozgit-Akgun, I. Donmez and N. Biyikli: ECS Trans., Vol. 10 (2013) No. 10, p.289.

DOI: 10.1149/05810.0289ecst

Google Scholar

[17] E. Goldenberg, C. Ozgit-Akgun, N. Biyikli and A.K. Okyay: J. Vac. Sci. Technol. A, Vol. 3 (2014) No. 3, p.031508.

Google Scholar

[18] S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Onneby and S.E. Mohney: Appl. Phys. Lett., Vol. 70 (1997) No. 16, p.2156.

Google Scholar

[19] V. Matolı́n, S. Fabı́k, J. Glosı́k, L. Bideux, Y. Ould-Metidji and B. Gruzza: Vacuum, Vol. 76 (2004) No. 4, p.471.

DOI: 10.1016/j.vacuum.2003.12.163

Google Scholar

[20] P. Kumar, M. Kumar, Govind, B.R. Mehta and S.M. Shivaprasad: Appl. Surf. Sci., Vol. 256 (2009) No. 9, p.517.

Google Scholar

[21] K. S Butcher, Afifuddin, P. Chen and T.L. Tansley: Phys. Status Solidi C, Vol. 0 (2002) No. 13, p.156.

Google Scholar

[22] W. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoç and A. Rockett: Phys. Rev. B: Condens. Matter Mater. Phys., Vol. 50 (1994) No. 15, p.14155.

DOI: 10.1103/physrevb.50.14155

Google Scholar

[23] Z. Majlinger, A. Bozanic, M. Petravic, K.J. Kim, B. Kim and Y.W. Yang: Vacuum, Vol. 84 (2010) No. 1, p.41.

Google Scholar

[24] G. Moldovan, I. Harrison, M. Roe and P.D. Brown: Inst. Phys. Conf. Ser., Vol. 179 (2004) No. 16, p.115.

Google Scholar