Fast Thermal Annealing of CH3NH3PbI3-xClx Films for Improving Hybrid Photovoltaics

Article Preview

Abstract:

Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 22.1% within the past 6 years, there is still considerable room for further improvement in device efficiency through development of smooth and large grain size perovskite films. Commonly, the smooth perovskite layers and large grains are alternative to CH3NH3PbI3-xClx. However, the previous one-step fabrication of CH3NH3PbI3-xClx using PbCl2 needs long annealing time. Herein, the active layer, a noncontinuous CH3NH3PbI3-xClx film with micrometre-level crystalline grain, was fabricated using a one-step spin-coating process followed by high-temperature annealing and exhibited an increased efficiency of 9.93%. This finding enables the formation of larger grain size perovskite films and the demonstration of efficient perovskite heterojunction solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

923-928

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /www. nrel. gov/ncpv/images/efficiency_chart. jpg, 2016-07-22.

Google Scholar

[2] D. W. deQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith and D. S. Ginger: Science, Vol. 348 (2015) No. 6235, p.683.

DOI: 10.1126/science.aaa5333

Google Scholar

[3] H. Choi, C. K. Mai, H. B. Kim, J. Jeong, S. Song, G. C. Bazan, J. Y. Kim and A. J. Heeger: Nature Communication, Vol. 6 (2015) No. 7348, p.1.

Google Scholar

[4] J. Chae, Q. Dong, J. Huang and A. Centrone: Nano Letters, Vol. 15 (2015) No. 12, p.8114.

Google Scholar

[5] R. Kang, J. -E. Kim, J. -S. Yeo, S. Lee, Y. -J. Jeon and D. -Y. Kim: The Journal of Physical Chemistry C, Vol. 118 (2014) No. 46, p.26513.

Google Scholar

[6] W. Qiu, T. Merckx, M. Jaysankar, C. Masse de la Huerta, L. Rakocevic, W. Zhang, U. W. Paetzold, R. Gehlhaar, L. Froyen, J. Poortmans, D. Cheyns, H. J. Snaith and P. Heremans: Energy & Environment Science, Vol. 9 (2016) No. 2, p.484.

DOI: 10.1039/c5ee03703d

Google Scholar

[7] M. D. Xiao, F. Z. Huang, W. C. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng and L. Spiccia: Angewandte Chemie-International Edition, Vol. 53 (2014) No. 37, p.9898.

DOI: 10.1002/anie.201405334

Google Scholar

[8] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca and H. G. Boyen: Advanced Materials, Vol. 26 (2014) No. 13, p. (2041).

Google Scholar

[9] W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Horantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. H. Yao, Y. L. Chen, R. H. Friend, L. A. Estroff, U. Wiesner and H. J. Snaith: Nature Communication, Vol. 6 (2015).

DOI: 10.1038/ncomms7142

Google Scholar

[10] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park: Nature Nanotechnology, Vol. 9 (2014) No. 11, p.927.

Google Scholar

[11] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao and J. Huang: Nature Communication, Vol. 6 (2015) No. 7747, p.1.

Google Scholar

[12] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang: Advanced Materials, Vol. 26 (2014) No. 37, p.6503.

Google Scholar

[13] W. Wang, Z. Zhang, Y. Cai, J. Chen, J. Wang, R. Huang, X. Lu, X. Gao, L. Shui, S. Wu and J. M. Liu: Nanoscale Research Letters, Vol. 11 (2016) No. 1, p.316.

Google Scholar

[14] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith: Advanced Functional Materials, Vol. 24 (2014) No. 1, p.151.

Google Scholar