Different Molecular Weight Chitosans Prepared via the Ionic Liquid Hydrolysis and their Antibacterial Activity

Article Preview

Abstract:

The hydrolysis effect of ionic liquid glycine chloride [Gly]Cl aqueous system without any catalyst on the degradation for chitosan were studied. The molecular weight (Mw) and degree of deacetylation (DD) of degraded products were tested via the viscometric method and the titration method, respectively. The structure of the raw and degraded chitosans were assessed through Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). Besides, the antibacterial effects of different Mw chitosans to Escherichia coli and Staphylococcus aureus were evaluated. The results showed that [Gly]Cl aqueous solution was of good assistant degradation effect for chitosan and different molecular weight (300-800 kDa) chitosans were obtained with different processing time via the ionic liquid hydrolysis method. The DD of degraded chitosans tested from titration method was almost unchanged by the treatment. The FTIR and XRD results showed that the ionic liquid degradation had no obvious effect on the molecular structure of chitosan. Besides, the antibacterial activity was closely relevant to the chitosan concentration and Mw. When the concentration was greater than 0.005% (w/v), chitosan began to show strong antibacterial activity. Molecular weight of 636 kDa exhibited commendable antimicrobial properties to E. coli and S. aureus simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-134

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. K. S. Pillai, W. Paul, C. P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation, Prog. Polym. Sci. 34(7) (2009) 641-678.

DOI: 10.1016/j.progpolymsci.2009.04.001

Google Scholar

[2] S. Roller, N. Covill, The antifungal properties of chitosan in laboratory media and apple juice, Int. J. Food. Microbiol. 47(1-2) (1999) 67-77.

DOI: 10.1016/s0168-1605(99)00006-9

Google Scholar

[3] J. C. Fernandes, F. K. Tavaria, J. C. Soares, Ó. S. Ramos, M. J. Monteiro, M. E. Pintado, F. X. Malcata, Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems, Food Microbiol. 25(7) (2008).

DOI: 10.1016/j.fm.2008.05.003

Google Scholar

[4] Y. B. Wu, S. H. Yu, F. L. Mi, C. W. Wu, S. S. Shyu, C. K. Peng, A. C. Chao, Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends, Carbohyd. Polym. 57(4) (2004) 435-440.

DOI: 10.1016/j.carbpol.2004.05.013

Google Scholar

[5] S. Viju, G. Thilagavathi, Effect of chitosan coating on the characteristics of silk-braided sutures, J. Ind. Text. 42(3) (2012) 256-268.

DOI: 10.1177/1528083711435713

Google Scholar

[6] A. M. Youssef, H. Abou-Yousef, S. M. El-Sayed, S. Kamel, Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films, Int. J. Biol. Macromol. 76 (2015) 25-32.

DOI: 10.1016/j.ijbiomac.2015.02.016

Google Scholar

[7] J. C. Cabrera, P. Van Cutsem, Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan, Biochem. Eng. J. 25(2) (2005) 165-172.

DOI: 10.1016/j.bej.2005.04.025

Google Scholar

[8] A. L. P. Fernandes, W. A. Morais, A. I. B. Santos, A. M. L. de Araújo, D. E. S. dos Santos, D. S. dos Santos, F. J. Pavinatto, O. N. Oliveira Jr, T. N. C. Dantas, The influence of oxidative degradation on the preparation of chitosan nanoparticles, Colloid Polym. Sci. 284(1) (2005).

DOI: 10.1007/s00396-005-1319-0

Google Scholar

[9] N. M. El-Sawy, H. A. A. El-Rehim, A. M. Elbarbary, E. S. A. Hegazy, Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes, Carbohyd. Polym. 79(3) (2010) 555-562.

DOI: 10.1016/j.carbpol.2009.09.002

Google Scholar

[10] I. Zainol, S. M. Ghani, A. Mastor, M. A. Derman, M. F. Yahya, Enzymatic degradation study of porous chitosan membrane, Mater. Res. Innov. 13(3) (2009) 316-319.

DOI: 10.1179/143307509x440631

Google Scholar

[11] C. Yue, D. Fang, L. Liu, T. F. Yi, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq. 163(3) (2011) 99-121.

DOI: 10.1016/j.molliq.2011.09.001

Google Scholar

[12] Q. Chen, W. Xiao, L. Zhou, T. Wu, Y. Wu, Hydrolysis of chitosan under microwave irradiation in ionic liquids promoted by sulfonic acid-functionalized ionic liquids, Polym. Degrad. Stabil. 97(1) (2012) 49-53.

DOI: 10.1016/j.polymdegradstab.2011.10.014

Google Scholar

[13] L. Li, B. Yuan, S. W. Liu, S. T. Yu, C. X. Xie, F. S. Liu, L. J. Shan, Clean preparation process of chitosan oligomers in gly series ionic liquids homogeneous system, J. Polym. Environ. 20(2) (2012) 388-394.

DOI: 10.1007/s10924-011-0388-z

Google Scholar

[14] M. Li, H. Zang, J. Feng, Q. Yan, N. Yu, X. Shi, B. Cheng, Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution, Polym. Degrad. Stabil. 121 (2015) 331-339.

DOI: 10.1016/j.polymdegradstab.2015.09.009

Google Scholar

[15] H. K. No, N. Y. Park, S. H. Lee, S. P. Meyers, Antibacterial activity of chitosans and chitosan oligomers with different molecular weights, Int. J. Food Microbiol. 74(1-2) (2002) 65-72.

DOI: 10.1016/s0168-1605(01)00717-6

Google Scholar

[16] N. Liu, X. G. Chen, H. J. Park, C. G. Liu, C. S. Liu, X. H. Meng, L. J. Yu, Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli, Carbohyd. Polym. 64(1) (2006) 60-65.

DOI: 10.1016/j.carbpol.2005.10.028

Google Scholar

[17] A. B. V. Kumar, M. C. Varadaraj, L. R. Gowda, R. N. Tharanathan, Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli, Biochem. J. 391 (2005).

DOI: 10.1042/bj20050093

Google Scholar

[18] I. Younes, S. Sellimi, M. Rinaudo, K. Jellouli, M. Nasri, Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities, Int. J. Food. Microbiol. 185 (2014) 57-63.

DOI: 10.1016/j.ijfoodmicro.2014.04.029

Google Scholar

[19] C. Qin, H. Li, Q. Xiao, Y. Liu, J. Zhu, Y. Du, Water-solubility of chitosan and its antimicrobial activity, Carbohyd. Polym. 63(3) (2006) 367-374.

DOI: 10.1016/j.carbpol.2005.09.023

Google Scholar

[20] L. Y. Zheng, J. F. Zhu, Study on antimicrobial activity of chitosan with different molecular weights, Carbohyd. Polym. 54(4) (2003) 527-530.

DOI: 10.1016/j.carbpol.2003.07.009

Google Scholar

[21] L. Li, B. Yuan, S. Liu, S. Yu, C. Xie, F. Liu, X. Guo, L. Pei, B. Zhang, Preparation of high strength chitosan fibers by using ionic liquid as spinning solution, J. Mater. Chem. 22 (2012) 8585-8593.

DOI: 10.1039/c2jm30555k

Google Scholar

[22] X. Jiang, L. Chen, W. Zhong, A new linear potentiometric titration method for the determination of deacetylation degree of chitosan, Carbohyd. Polym. 54(4) (2003) 457-463.

DOI: 10.1016/j.carbpol.2003.05.004

Google Scholar

[23] C. R. Huei, H. D. Hwa, Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane, Carbohyd. Polym. 29(4) (1996) 353-358.

DOI: 10.1016/s0144-8617(96)00007-0

Google Scholar

[24] Y. C. Chung, Y. P. Su, C. C. Chen, G. Jia, H. L. Wang, J. G. Wu, J. G. Lin, Relationship between antibacterial activity of chitosan and surface characteristics of cell wall, Acta. Pharmacol. Sin. 25(7) (2004) 932-936.

Google Scholar