Cyclic Voltammetry Measurement for n-Type Cu2O Thin Film Using Copper Sulphate-Based Solution

Article Preview

Abstract:

Cuprous oxide (Cu2O) is a promising material for solar cell application. Due to its various advantages over silicon material, it has been exploited extensively to be use in photovoltaic cell. Cu2O thin films were electrodeposited in sulfate-based solution. Cyclic voltammorgram (CV) measurement was used to investigate the reduction process under controlled parameters. Deposition potential of-0.1V vs. Ag/AgCl was used for the fabrication of Cu2O thin film based on the CV measurement. CV also revealed that the deposition speed was dependent on the bath pH and the temperature. X-ray diffraction (XRD) measurement, Field Emission Scanning-Electron Microscopy (FE-SEM) and Ultraviolet-visible spectroscopy (UV-Vis) were performed to characterize the deposited thin films. The n-Cu2O was successfully fabricated on FTO glass substrate with (111)-prefered orientation. Surface morphology of the thin films were observed to be in flower-like shape combination with pyramidal and triangular shape.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-124

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Takasa, A. Awakura, Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu2O Films, J. Electrochem. Soc. 152 (2005) C179-C182.

DOI: 10.1149/1.1862478

Google Scholar

[2] W. Shockley, H. J. Queisser, Detailed Balance Limit of Efficiency of pn Junction Solar Cells, J. Appl. Phys. 32 (1961) 510-519.

DOI: 10.1063/1.1736034

Google Scholar

[3] B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, M. Izaki, Electrochemical Growth of (0001)-n-ZnO Film on (111)-p-Cu2O Film and the Characterization of the Heterojunction Diode, J. Electrochem. Soc., 158(10) (2011) D621-D625.

DOI: 10.1149/1.3623776

Google Scholar

[4] B. M. Fariza, J. Sasano, T. Shinagawa, S. Watase, M. Izaki, Light-assisted electrochemical construction of (111)Cu2O/(0001)ZnO heterojunction, Thin Solid Films, 520(6) (2012) 2261-2264.

DOI: 10.1016/j.tsf.2011.09.022

Google Scholar

[5] M. A. Green, M. J. Keevers, Optical properties of intrinsic silicon at 300 K, Prog. Photovoltaics. 3 (1995) 189-192.

DOI: 10.1002/pip.4670030303

Google Scholar

[6] A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Appl. Phys. Lett. 88 (2006) 163502.

DOI: 10.1063/1.2194315

Google Scholar

[7] M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, J. Phys. D: Appl. Phys., 40 (2007) 3326.

DOI: 10.1088/0022-3727/40/11/010

Google Scholar

[8] G. K. Paul, R. Ghosh, S. K. Bera, S. Bandyopadhyay, T. Sakurai, K. Akimoto, Deep level transient spectroscopy of cyanide treated polycrystalline p-Cu2O/n-ZnO solar cell, Chem. Phys. Lett. 463 (2008) 117-120.

DOI: 10.1016/j.cplett.2008.08.065

Google Scholar

[9] T. Minami, Y. Nishi, T. Miyata, High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer, Appl. Phys. Express, 6 (2013) 044101.

DOI: 10.7567/apex.6.044101

Google Scholar

[10] G. H. A. Therese, P. V. Kamath, Electrochemical synthesis of metal oxide hydroxides, Chem. Mater. 12 (2000) 1195-1204.

DOI: 10.1021/cm990447a

Google Scholar

[11] K. Han, M. Tao, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Sol. Energ. Mater. & Sol C. 93 (2009) 153-157.

DOI: 10.1016/j.solmat.2008.09.023

Google Scholar

[12] K. Han, K. Han, M. Tao, Characterization of Cl-doped n-type Cu2O prepared by electrodeposition, Thin Solid Films, 518 (2010) 5363-5367.

DOI: 10.1016/j.tsf.2010.03.085

Google Scholar

[13] L. Wang, M. Tao, Electrochemical and Solid-State Letters, 10(9) (2007) H248-H250.

Google Scholar