Assessing Retinal Hazardous Effects from Phosphor Converted Light Emitting Diode (LED) Lighting with Different Correlated Color Temperature (CCT)

Article Preview

Abstract:

Due to the rapid growth in the use of blue-light-based electrical panels and much brighter lighting environments, the socioeconomic impact by retinal light injury is critical. Understanding the material property and mechanisms underlying this hazard is important for both effective and user-friendly product development. The InGaN based blue LED has been applied to excite the yellow phosphor (Y3Al5O12:Ce3+) for white light generation. In this study, custom-made phosphor-converted white light emitting diode (pc-WLED) with correlated color temperature (CCT) ranging from 2700K to 6500K were used for exposure treatments to assess the potential retinal injury. We examined LED induced retinal neuronal cell damage in a rat model through functional and histopathological measurements. Electroretinography (ERG), hematoxylin and eosin (H&E) staining, and transmission electron microscopy (TEM) were used for pathological examinations. The experimental results indicate that blue-rich-LED light could induce more photochemical injury to the retina after the exposure. The results of this study suggest that retinal injury is mainly induced by photosensitizer-and photopigment-mediated oxidative stress with color temperature dependent effect, and users should be more aware of this effect before switching to LED lamps for domestic lighting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-118

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Q. Khanh, P. Bodrogi, Q. T. Vinh, H. Winkler, LED Lighting: Technology and Perception, Wiley-VCH, Weinheim, Germany, (2015).

DOI: 10.1002/9783527670147

Google Scholar

[2] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Mater. Sci. Eng.: R: Reports, 71 (2010) 1-34.

DOI: 10.1016/j.mser.2010.07.001

Google Scholar

[3] D. DiLaura, K. Houser, R. Mistrick, G. Steffy, IES Lighting Handbook, 10th ed., Illuminating Engineering Society, New York, (2011).

Google Scholar

[4] X. W. Chen, Y. Zhang, S. T. Li, Q. R. Yan, S. W. Zheng, M. He, G. H. Fan, Improving color rendering of Y3Al5O12: Ce3+ white light-emitting diodes based on dual-blue-emitting active layers, Phys. Stat. Sol. (a), 208 (2011) 1972-(1975).

DOI: 10.1002/pssa.201026552

Google Scholar

[5] B. Wang, H. Lin, F. Huang, J. Xu, H. Chen, Z. Lin, Y. Wang, Non-Rare-Earth BaMgAl10–2xO17: xMn4+, xMg2+: A Narrow-Band Red Phosphor for Use as a High-Power Warm w-LED, Chem. Mater. 28 (2016) 3515-3524.

DOI: 10.1021/acs.chemmater.6b01303.s001

Google Scholar

[6] H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, R. Xie, Z. Huang, Z. Xia, O. M. ten Kate, L. Liu, V. V. Atuchin, Structure evolution and photoluminescence of Lu3(Al, Mg)2(Al, Si)3O12: Ce3+ phosphors: new yellow-color converters for blue LED-driven solid state lighting, J. Mater. Chem. C, 4 (2016).

DOI: 10.1039/c6tc00966b

Google Scholar

[7] Y. Qiang, Y. Yu, G. Chen, J. Fang, A flux-free method for synthesis of Ce3+-doped YAG phosphor for white LEDs, Mater. Res. Bull. 74 (2016) 353-359.

DOI: 10.1016/j.materresbull.2015.10.046

Google Scholar

[8] Y. Tian, Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs, J. Sol. Stat. Light. 10. 1186/s40539-014-0011-8 (2014).

DOI: 10.1186/s40539-014-0011-8

Google Scholar

[9] Y. M. Shang, G. S. Wang, D. Sliney, C. H. Yang, L. L. Lee, White Light-Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model, Environ. Health Perspect., 122 (2014) 269-276.

DOI: 10.1289/ehp.1307294

Google Scholar

[10] D. B. Rein, J. S. Wittenborn, X. Z. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, V. H. Cost-Effectiveness, Forecasting Age-Related Macular Degeneration Through the Year 2050 The Potential Impact of New Treatments, Arch. Ophthalmol. 127 (2009).

DOI: 10.1001/archophthalmol.2009.58

Google Scholar

[11] M. Rozanowska, T. Sarna, Light-induced damage to the retina: role of rhodopsin chromophore revisited, Photochem. Photobiol., 81 (2005) 1305-1330.

DOI: 10.1562/2004-11-13-ir-371

Google Scholar

[12] M. Fujihara, N. Nagai, T. E. Sussan, S. Biswal, J. T. Handa, Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice, PLoS One, 3 (2008) e3119.

DOI: 10.1371/journal.pone.0003119

Google Scholar

[13] M. Mainster, M. Boulton, Retinal phototoxicity in: D. Albert, J. Miller (Eds. ) Principles and Practice of Ophthalmology, Elsevier, London, 2008, p.2195-(2025).

Google Scholar

[14] M. Boulton, M. Rozanowska, B. Rozanowski, Retinal photodamage, J. Photochem. Photobiol. B, 64 (2001) 144-161.

Google Scholar

[15] S. Schmitz-Valckenberg, M. Fleckenstein, H. P. Scholl, F. G. Holz, Fundus autofluorescence and progression of age-related macular degeneration, Surv. Ophthalmol. 54 (2009) 96-117.

DOI: 10.1016/j.survophthal.2008.10.004

Google Scholar

[16] S. Davies, M. H. Elliott, E. Floor, T. G. Truscott, M. Zareba, T. Sarna, F. A. Shamsi, M. E. Boulton, Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells, Free Radic. Biol. Med., 31 (2001) 256-265.

DOI: 10.1016/s0891-5849(01)00582-2

Google Scholar

[17] M. A. Mainster, Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems, Ophthalmology, 93 (1986) 952-958.

DOI: 10.1016/s0161-6420(86)33637-6

Google Scholar

[18] H. G. Sperling, A. A. Wright, S. L. Mills, Color vision following intense green light exposure: data and a model, Vision Res., 31 (1991) 1797-1812.

DOI: 10.1016/0042-6989(91)90027-3

Google Scholar