Synthesis of Ti-Zr-V Non-Evaporable Getter Thin Films Grown on Al Alloy and CuCrZr Alloy

Article Preview

Abstract:

The Ti-Zr-V non-evaporable getter (NEG) films were grown on Aluminum (Al) alloy and CuCrZr alloy, which can be used to fabricate the vacuum chambers in the ultra-high vacuum status. The Al alloy and CuCrZr alloy samples with different surface roughness were prepared by the different manufacturing methods. We studied whether the behavior and the microstructure of the Ti-Zr-V getter films are influence by the surface roughness of the substrate. The surface morphologies of Ti-Zr-V NEG films appear distinct and the growth of the films follows the nature of the substrate surface. The Ti-Zr-V films have nanocrystalline structures and the grain sizes of the films become slightly larger with increasing the surface smoothness. In addition, it was found that the reduction of the Ti-Zr-V NEG films to the metallic state was affected by presence of surface defects on the films. The surface defects should result from the existence of micro-pores, pockmarks, and micro-cracks on the original substrate, which produced from the manufacturing process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-94

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Suetsugu, K. Kanazawa, K. Shibata, H. Hisamatsu, K. Oide, F. Takasaki, R. V. Dostovalov, A. A. Krasnov, K. V. Zolotarev, E. S. Konstantinov, V. A. Chernov, A. E. Bondar, A. N. Shmakov, First experimental and simulation study on the secondary electron and photoelectron yield of NEG materials (Ti-Zr-V) coating under intense photon irradiation, Nucl. Instr. Meth. Phys. Res. A. 554 (2005).

DOI: 10.1016/j.nima.2005.08.061

Google Scholar

[2] M. Hahn, Operational experience and relation to deposition process for NEG coated chambers installed on the ESRF electron storage ring, Vacuum 81 (2007) 759-761.

DOI: 10.1016/j.vacuum.2005.11.051

Google Scholar

[3] C. Benvenuti, P. Chiggiato, F. Cicoira F, Y. L'Aminot, Nonevaporable getter films for ultrahigh vacuum applications, J. Vac. Sci Technol. A 16 (1998) 148-154.

DOI: 10.1116/1.580963

Google Scholar

[4] C. Benvenuti, P. Chiggiato, F. Cicoira, V. Ruzinov, Decreasing surface outgassing by thin film getter coatings, Vacuum 50 (1998) 57-63.

DOI: 10.1016/s0042-207x(98)00017-7

Google Scholar

[5] C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Escudeiro Santana, T. Hedley, A. Mongelluzzo, V. Ruzinov, I. Wevers, Vacuum properties of TiZrV non-evaporable getter films, Vacuum 60 (2001) 57-65.

DOI: 10.1016/s0042-207x(00)00246-3

Google Scholar

[6] A. E. Prodromides, C. Scheuerlein, M. Taborelli, Lowering the activation temperature of TiZrV non-evaporable getter films, Vacuum 60 (2001) 35-41.

DOI: 10.1016/s0042-207x(00)00243-8

Google Scholar

[7] C. Benvenuti, J. M. Cazeneuve, P. Chiggiato, F. Cicoira, A. Escudeiro Santana, V. Johanek, V. Ruzinov, J. Fraxedas, A novel route to extreme vacua: the nonevaporable getter thin film coatings, Vacuum 53 (1999) 219-225.

DOI: 10.1016/s0042-207x(98)00377-7

Google Scholar

[8] C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Prodromides, V. Ruzinov, Influence of the substrate coating temperature on the vacuum properties of Ti-Zr-N non-evaporable getter films, Vacuum 71 (2003) 307-315.

DOI: 10.1016/s0042-207x(02)00755-8

Google Scholar

[9] Y. Suetsugu, M. Shirai, M. Ohtsuka, T. Nishidono, K. Watanabe, Y. Suzuki, M. Tsuchiya, A. Yonemoto, K. Sennyu, H. Hara, Development of copper alloy Matsumoto-Ohtsuka vacuum flanges and its application to accelerator beam pipes, J. Vac. Sci Technol. A 27 (2009).

DOI: 10.1116/1.3237149

Google Scholar

[10] Z. Song, X. Bao, U. Wild, M. Muhler, G. Ertl, Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD, App. Surf. Sci. 134 (1998) 31-38.

DOI: 10.1016/s0169-4332(98)00249-9

Google Scholar

[11] K. L. Håkansson, H. I. P. Johansson, L. I. Johansson, High-resolution core-level study of ZrC(100) and its reaction with oxygen, Phys. Rev. B 48 (1993) 2623-2626.

DOI: 10.1103/physrevb.48.2623

Google Scholar

[12] John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, U.S. A, 1992, p.40.

Google Scholar

[13] S. Fabik, V. Dudr, K. Masek, K. C. Prince, F. Sutara, K. Veltruska, N. Tsud, M. Vondracek, V. Matolin, Activation of binary Zr–V non-evaporable getters: a soft X-ray photoemission study of carbide formation, Surf. Sci. 566-568 (2004) 1246-1249.

DOI: 10.1016/j.susc.2004.06.138

Google Scholar

[14] H. Kitaoka, K. Ozawa, K. Edamoto, S. Otani, The interaction of water with oxygen-modified ZrC(100) surfaces, Solid State Commun. 118 (2001) 23-26.

DOI: 10.1016/s0038-1098(01)00037-0

Google Scholar

[15] V. Matolin, J. Drbohlav, K. Masek, Mechanism of non-evaporable getter activation XPS and static SIMS study of Zr44V56 alloy, Vacuum 71 (2003) 317-322.

DOI: 10.1016/s0042-207x(02)00756-x

Google Scholar

[16] C. C. Li, J. L. Huang, R. J. Lin, C. H. Chen, D. F. Lii, Characterization of activated non-evaporable porous Ti and Ti–Zr–V getter films by synchrotron radiation photoemission spectroscopy, Thin Solid Films 515 (2006) 1121-1125.

DOI: 10.1016/j.tsf.2006.07.052

Google Scholar

[17] S. S. Zumdahl, Chemical Principles, Houghton Mifflin Company, USA, 2002, p.582.

Google Scholar

[18] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, Washington, 1995, p.356.

Google Scholar

[19] Y. S. Li, P. C. Wong, K. A. R. Mitchell, XPS investigations of the interactions of hydrogen with thin films of zirconium oxide II. Effects of heating a 26 Å thick film after treatment with a hydrogen plasma, Appl. Surf. Sci. 89 (1995) 263-269.

DOI: 10.1016/0169-4332(95)00032-1

Google Scholar

[20] K. Mas̆ek, F. ek S̆utara, T. Skála, J. Drbohlav, K. Veltruská, V. Matolı́n, X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy study of activation mechanism of Zr–V low activation temperature nonevaporable getter films, J. Vac. Sci. Technol. A 21 (2003).

DOI: 10.1116/1.1562175

Google Scholar

[21] T. Y. Tai, S. J. Lu, Improving the fatigue life of electro-discharge-machined SDK11 tool steel via the suppression of surface cracks, Int. J. Fatig. 31 (2009) 433-438.

DOI: 10.1016/j.ijfatigue.2008.07.013

Google Scholar

[22] L. C. Lai, W. A. Chiou, J. C. Earthman, Influence of electrical discharged machining and surface defects on the fatigue strength of electrodeposited nanocrystalline Ni, Int. J. Fatig. 32 (2010) 584-591.

DOI: 10.1016/j.ijfatigue.2009.04.010

Google Scholar