[1]
Y. Suetsugu, K. Kanazawa, K. Shibata, H. Hisamatsu, K. Oide, F. Takasaki, R. V. Dostovalov, A. A. Krasnov, K. V. Zolotarev, E. S. Konstantinov, V. A. Chernov, A. E. Bondar, A. N. Shmakov, First experimental and simulation study on the secondary electron and photoelectron yield of NEG materials (Ti-Zr-V) coating under intense photon irradiation, Nucl. Instr. Meth. Phys. Res. A. 554 (2005).
DOI: 10.1016/j.nima.2005.08.061
Google Scholar
[2]
M. Hahn, Operational experience and relation to deposition process for NEG coated chambers installed on the ESRF electron storage ring, Vacuum 81 (2007) 759-761.
DOI: 10.1016/j.vacuum.2005.11.051
Google Scholar
[3]
C. Benvenuti, P. Chiggiato, F. Cicoira F, Y. L'Aminot, Nonevaporable getter films for ultrahigh vacuum applications, J. Vac. Sci Technol. A 16 (1998) 148-154.
DOI: 10.1116/1.580963
Google Scholar
[4]
C. Benvenuti, P. Chiggiato, F. Cicoira, V. Ruzinov, Decreasing surface outgassing by thin film getter coatings, Vacuum 50 (1998) 57-63.
DOI: 10.1016/s0042-207x(98)00017-7
Google Scholar
[5]
C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Escudeiro Santana, T. Hedley, A. Mongelluzzo, V. Ruzinov, I. Wevers, Vacuum properties of TiZrV non-evaporable getter films, Vacuum 60 (2001) 57-65.
DOI: 10.1016/s0042-207x(00)00246-3
Google Scholar
[6]
A. E. Prodromides, C. Scheuerlein, M. Taborelli, Lowering the activation temperature of TiZrV non-evaporable getter films, Vacuum 60 (2001) 35-41.
DOI: 10.1016/s0042-207x(00)00243-8
Google Scholar
[7]
C. Benvenuti, J. M. Cazeneuve, P. Chiggiato, F. Cicoira, A. Escudeiro Santana, V. Johanek, V. Ruzinov, J. Fraxedas, A novel route to extreme vacua: the nonevaporable getter thin film coatings, Vacuum 53 (1999) 219-225.
DOI: 10.1016/s0042-207x(98)00377-7
Google Scholar
[8]
C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Prodromides, V. Ruzinov, Influence of the substrate coating temperature on the vacuum properties of Ti-Zr-N non-evaporable getter films, Vacuum 71 (2003) 307-315.
DOI: 10.1016/s0042-207x(02)00755-8
Google Scholar
[9]
Y. Suetsugu, M. Shirai, M. Ohtsuka, T. Nishidono, K. Watanabe, Y. Suzuki, M. Tsuchiya, A. Yonemoto, K. Sennyu, H. Hara, Development of copper alloy Matsumoto-Ohtsuka vacuum flanges and its application to accelerator beam pipes, J. Vac. Sci Technol. A 27 (2009).
DOI: 10.1116/1.3237149
Google Scholar
[10]
Z. Song, X. Bao, U. Wild, M. Muhler, G. Ertl, Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD, App. Surf. Sci. 134 (1998) 31-38.
DOI: 10.1016/s0169-4332(98)00249-9
Google Scholar
[11]
K. L. Håkansson, H. I. P. Johansson, L. I. Johansson, High-resolution core-level study of ZrC(100) and its reaction with oxygen, Phys. Rev. B 48 (1993) 2623-2626.
DOI: 10.1103/physrevb.48.2623
Google Scholar
[12]
John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, U.S. A, 1992, p.40.
Google Scholar
[13]
S. Fabik, V. Dudr, K. Masek, K. C. Prince, F. Sutara, K. Veltruska, N. Tsud, M. Vondracek, V. Matolin, Activation of binary Zr–V non-evaporable getters: a soft X-ray photoemission study of carbide formation, Surf. Sci. 566-568 (2004) 1246-1249.
DOI: 10.1016/j.susc.2004.06.138
Google Scholar
[14]
H. Kitaoka, K. Ozawa, K. Edamoto, S. Otani, The interaction of water with oxygen-modified ZrC(100) surfaces, Solid State Commun. 118 (2001) 23-26.
DOI: 10.1016/s0038-1098(01)00037-0
Google Scholar
[15]
V. Matolin, J. Drbohlav, K. Masek, Mechanism of non-evaporable getter activation XPS and static SIMS study of Zr44V56 alloy, Vacuum 71 (2003) 317-322.
DOI: 10.1016/s0042-207x(02)00756-x
Google Scholar
[16]
C. C. Li, J. L. Huang, R. J. Lin, C. H. Chen, D. F. Lii, Characterization of activated non-evaporable porous Ti and Ti–Zr–V getter films by synchrotron radiation photoemission spectroscopy, Thin Solid Films 515 (2006) 1121-1125.
DOI: 10.1016/j.tsf.2006.07.052
Google Scholar
[17]
S. S. Zumdahl, Chemical Principles, Houghton Mifflin Company, USA, 2002, p.582.
Google Scholar
[18]
D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, Washington, 1995, p.356.
Google Scholar
[19]
Y. S. Li, P. C. Wong, K. A. R. Mitchell, XPS investigations of the interactions of hydrogen with thin films of zirconium oxide II. Effects of heating a 26 Å thick film after treatment with a hydrogen plasma, Appl. Surf. Sci. 89 (1995) 263-269.
DOI: 10.1016/0169-4332(95)00032-1
Google Scholar
[20]
K. Mas̆ek, F. ek S̆utara, T. Skála, J. Drbohlav, K. Veltruská, V. Matolı́n, X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy study of activation mechanism of Zr–V low activation temperature nonevaporable getter films, J. Vac. Sci. Technol. A 21 (2003).
DOI: 10.1116/1.1562175
Google Scholar
[21]
T. Y. Tai, S. J. Lu, Improving the fatigue life of electro-discharge-machined SDK11 tool steel via the suppression of surface cracks, Int. J. Fatig. 31 (2009) 433-438.
DOI: 10.1016/j.ijfatigue.2008.07.013
Google Scholar
[22]
L. C. Lai, W. A. Chiou, J. C. Earthman, Influence of electrical discharged machining and surface defects on the fatigue strength of electrodeposited nanocrystalline Ni, Int. J. Fatig. 32 (2010) 584-591.
DOI: 10.1016/j.ijfatigue.2009.04.010
Google Scholar