Non Linear Optical, Thermodynamic Analysis and Spectroscopic Investigation of GPA Optical Materials

Article Preview

Abstract:

In this work, density functional theory (DFT) calculations with B3LYP/6-311++G(d,p) basis sets was used to explore the electronic, structural, nonlinear optical and thermal properties aspects of glycine-phthalic acid (GPA) optical materials. Dipole moment, static polarizability and first hyperpolarizability analysis of the molecule have been performed. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. MEP study confirms GPA as an electron rich species and explains its electrophilic nature. MEP shows that this molecule has several possible sites for electrophilic/nucleophilic attack in which V(r) calculations provide insights into the order of preference. The low value of HOMO-LUMO energy gap reflects the high chemical reactivity, low chemical stability and hardness of GPA molecule. Thermodynamic properties of the title compound have been calculated at different temperatures and the results reveal that the standard heat capacities (Cp), standard entropies (S) and standard enthalpy (H) increase with rise in temperature. These results discussed in this study will upsurge the knowledge to design and synthesize new type nonlinear optical materials with exceptional chemical and physical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-111

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. D. Godfrey, D. R. Brown, Shape of glycine, J. Am. Chem. Soc. 117 (1995) 2019-(2023).

Google Scholar

[2] T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Glycine-phthalic acid (1/1), Acta Cryst. E69 (2013) O57.

Google Scholar

[3] M. Suresh kumar, S. Krishnan, S. Jerome Das, Growth, optical and thermal studies on novel nonlinear optical crystal: Glycine–phthalic acid (GPA), Optik 127 (2016) 2509-2511.

DOI: 10.1016/j.ijleo.2015.11.171

Google Scholar

[4] J. W. Hu, Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB) Isolator Devices Subjected to Near-Fault (NF) Ground Motions. Sustainabil. 7 (2015) 111-137.

DOI: 10.3390/su7010111

Google Scholar

[5] M. R. Kaloop, J. W. Hu, Y. Bigdeli, Identification of the Response of a Controlled Building Structure Subjected to Seismic Load by Using Nonlinear System Models. Appl. Sci. 6 (2016) 301.

DOI: 10.3390/app6100301

Google Scholar

[6] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A. Y. Wang, J. R. Durig, Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N-dimethylthiocarbamate, Spectrochim. Acta A 49 (1993).

DOI: 10.1016/s0584-8539(09)91012-1

Google Scholar

[7] J. Chocholousova, V. VladiminSpirko, P. Hobza, First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H×××O and improper blue-shifted C–H×××O hydrogen bonds, Phys. Chem. 6 (2004) 37-41.

DOI: 10.1039/b314148a

Google Scholar

[8] A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (1988) 899-926.

DOI: 10.1021/cr00088a005

Google Scholar

[9] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Wiley, New York, 1991. 264.

Google Scholar

[10] J. D. Bierlein, H. Vanherzeele, Potassium titanyl phosphate: properties and new applications, J. Opt. Soc. Am. B 6 (1989) 622–633.

DOI: 10.1364/josab.6.000622

Google Scholar

[11] X. J. Liu, Y. Su, H. K. Zhang, G. Chen, Theoretical calculations and surface morphology studies of l-threonine formate, Spectrochim. Acta A 101 (2013) 389-393.

DOI: 10.1016/j.saa.2012.09.077

Google Scholar

[12] F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge, (2005).

DOI: 10.1017/cbo9780511614569

Google Scholar

[13] N. Okulik, A. H. Jubert, Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs, Internet electron, J. Mol. Des. 4 (2005) 17-30.

Google Scholar

[14] I. Fleming, Frontier Orbitals, Organic Chemical Reactions, Wiley, London, (1976).

Google Scholar

[15] M. Plazanet, M. R. Johnson, A. Cousson, J. Meinnel, H. P. Trommsdorff, Molecular deformations of halogeno-mesitylenes in the crystal: structure, methyl group rotational tunneling, and numerical modeling, Chem. Phys. 285 (2002) 299-308.

DOI: 10.1016/s0301-0104(02)00817-0

Google Scholar