Creep Behaviors of CrMnFeCoNi High Entropy Alloy at Intermediate Temperatures

Article Preview

Abstract:

In this study, creep properties and fracture behavior of CrMnFeCoNi high entropy alloy (HEA) were studied at intermediate temperatures. The invert-type transient primary creep behaviors were observed in CrMnFeCoNi high entropy alloy. Creep behaviors of HEA are similar to those of class I solid solution alloys. The transient creep curves upon increase of stress by 5MPa in the steady state creep region did not change much except the sudden strain increase. And, no decrease of creep rate was observed upon increase of stress. Instead, the slightly invert transient creep or almost straight creep curves were observed, supporting the high friction stress. CrMnFeCoNi high entropy alloy has a stress exponent of 3.75 and the creep activation energy was calculated to be 278KJ/mole. The fracture strain increased from 1.3 to 1.6 with the decrease of stress from 96 MPa to 48MPa. The lower stress exponent along with the invert type primary creep curves strongly suggest that the creep of CrMnFeCoNi high entropy alloy at 600°C~650°C occurs by a glide controlled process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] C. Y. Hsu, J. W. Yeh, S. K. Chen, T. T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0. 5Fe alloy with boron addition, Metall. Mater. Trans. A 35 (2004) 1465–1469.

DOI: 10.1007/s11661-004-0254-x

Google Scholar

[3] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater. 10 (2008) 534–538.

DOI: 10.1002/adem.200700240

Google Scholar

[4] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.

Google Scholar

[5] G. Salishchev, M. Tikhonovsky, D. Shaysultanov, N. Stepanov, A. Kuznetsov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloy. Compd. 591 (2014) 11–21.

DOI: 10.1016/j.jallcom.2013.12.210

Google Scholar

[6] B. S. Murty, J. W. Yeh, S. Ranganathan, High-Entropy Alloys, Elsevier Science (2014).

Google Scholar

[7] S. I. Hong, J. Moon, S. K Hong, H. S. Kim, Mater. Sci. Eng. A., Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy (2016) http: /dx. doi. org/10. 1016/j. msea. 2016. 11. 078.

DOI: 10.1016/j.msea.2016.11.078

Google Scholar

[8] I. Toda-Caraballo, P. E. J. Rivera-Dı´az-del-Castillo, Modelling solid solution hardening in high entropy alloys, Acta Mater. 85 (2015) 14-23.

DOI: 10.1016/j.actamat.2014.11.014

Google Scholar

[9] R. Labusch, G. Grange, J. Ahearn, P. Haasen, in: J. C. M. Li, A. K. Mukherjee (Eds. ), Deformation and Fracture of High Polymers, ASM, Cleveland, Ohio (1975) 26-46.

Google Scholar

[10] S. I. Hong, Influence of dynamic strain aging on the stress exponent and the dislocation substructure for the creep of Al Mg alloys, Mater. Sci. Eng. 82 (1986) 175-185.

DOI: 10.1016/0025-5416(86)90105-9

Google Scholar

[11] S. I. Hong, Influence of dynamic strain aging on the dislocation substructure in a uniaxial tension test, Mater. Sci. Eng. 79 (1) 1-7.

Google Scholar

[12] S. I. Hong, Influence of dynamic strain aging on the transition of creep characteristics of a solid solution alloy at various temperatures, Mater. Sci. Eng. A. 110 (1989) 125-130.

DOI: 10.1016/0921-5093(89)90163-9

Google Scholar

[13] K. L. Murty, F. A. Mohamed and J. E. Dorn, Acts Metar. 20 (1972) 1009.

Google Scholar

[14] F. A. Mohamed, Creep behavior of solid solution alloys, Mater. Sci. Eng. 38 (1979) 73-80.

Google Scholar

[15] P. Yavari, T. G. Langdon, An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels, Acta Metall. 30 (1982) 2181-2196.

DOI: 10.1016/0001-6160(82)90139-0

Google Scholar

[16] M. Pahutova, J. Cadek, On two types of creep behaviour of F.C.C. solid solution alloys, Phys. Stat. Sol. (a) 56 (1979) 305-313.

DOI: 10.1002/pssa.2210560133

Google Scholar

[17] G. B. Jeong, I. W. Kim, S. I. Hong, Influence of microstructure modification on the circumferential creep of Zr–Nb–Sn–Fe cladding tubes, J. Nucl. Mater. 468 (2016) 171-177.

DOI: 10.1016/j.jnucmat.2015.11.029

Google Scholar

[18] S. Y. Lee, K. T. Kim, S. I. Hong, Circumferential creep properties of stress-relieved Zircaloy-4 and Zr–Nb–Sn–Fe cladding tubes, J. Nucl. Mater. 392 (2009) 63-69.

DOI: 10.1016/j.jnucmat.2009.03.045

Google Scholar

[19] S. I. Hong, Influence of dynamic strain aging on the apparent activation energy for creep, Mater. Sci. Eng. 64 (1984) L19-L21.

DOI: 10.1016/0025-5416(84)90112-5

Google Scholar

[20] W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, Z. P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Materialia 68 (2013) 526–529.

DOI: 10.1016/j.scriptamat.2012.12.002

Google Scholar

[21] K. Y. Tsai, M. H. Tsai, J. W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (2013) 4887–4897.

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar