Microstructural Evolution and Mechanical Properties in a Mn1.05Fe1.05CoNiCu0.9 High Entropy Alloy

Article Preview

Abstract:

In the present study, the microstructural stability and mechanical properties of a MnFeCoNiCu alloy in which Cr was replaced by Cu from Cantor composition (CoCrFeMnNi) was studied. In the as-cast alloy, the dendrite arms are enriched with Cu and Mn and matrix between dendrite arms is enriched with Fe and Co. Ni was richer in the matrix, but also observed in the dendrite arms. Cu and Mn tend to segregate and solidify initially because the melting temperatures of Cu and Mn are lower than Fe and Co, resulting in the growth of Cu-Mn dendrite. After homogenization, the dendrites structure disappeared and grain boundaries are visible, indicating the segregated elements in the dendrite structure were homogenized. The presence of single phase FCC structure was confirmed after homogenization. The tensile strength of 1220 MPa with the ductility of 6 % was obtained in MnFeCoNiCu alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. S. Murty, J. W. Yeh, S. Ranganathan, High-Entropy Alloys, Elsevier Science, (2014).

Google Scholar

[2] Z. Y. Rao, X. Wang, J. Zhu, X. H. Chen, L. Wang, J. J. Si, Y. D. Wu, X. D. Hui, Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties, Intermetal. 77 (2016) 23-33.

DOI: 10.1016/j.intermet.2016.06.011

Google Scholar

[3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[4] B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[5] F. Otto, Y. Yang, H. Bei, E. P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia 61 (2013) 2628-2638.

DOI: 10.1016/j.actamat.2013.01.042

Google Scholar

[6] W. L. Wang, L. Hu, S. B. Luo, L. J. Meng, D. L. Geng, B. Wei, Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy, Intermetal. 77 (2016) 41-45.

DOI: 10.1016/j.intermet.2016.07.003

Google Scholar

[7] L. De Caro, C. Giannini, L. Tapfer, H. -P. Schönherr, L. Däweritz, K. H. Ploog, Validity of vegard's rule for the lattice parameter and the stiffness elastic constant ratios of the AlGaAs ternary compound, Solid State Commun. 108 (1998) 77-81.

DOI: 10.1016/s0038-1098(98)00327-5

Google Scholar

[8] S. I. Hong, J. Moon, S. K. Hong, H. S. Kim, Mater. Sci. Eng. A, Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy (2016) http: /dx. doi. org/10. 1016. j. msea. 2016. 11. 078.

DOI: 10.1016/j.msea.2016.11.078

Google Scholar

[9] P. P. Bhattacharjee, G. D. Sathiaraj, M. Zaid, J. R. Gatti, C. Lee, C. W. TsaI, J. W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloy. Compd. 587 (2014) 544-552.

DOI: 10.1016/j.jallcom.2013.10.237

Google Scholar

[10] Y. Zhou, Y. Zang, Y. Wang, G. Chen, Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties, Appl, Phys. Lett. 90 (2007) 181904-181904.

Google Scholar

[11] B. Gludovatz, A. Hohenwarter, D. Cato or, E. H. Chang, E. P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.

DOI: 10.1126/science.1254581

Google Scholar

[12] M. A. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, P. Liaw, Fatigue Behavior of Al0. 5CoCrCuFeNi High Entropy Alloys, Acta Mater. 60 (2012) 5723-5734.

DOI: 10.1016/j.actamat.2012.06.046

Google Scholar

[13] S. I. Hong, C. Laird, Mechanisms of slip mode modification in FCC solid solutions, Acta Metall. 38 (1990) 1581-1594.

DOI: 10.1016/0956-7151(90)90126-2

Google Scholar

[14] S. I. Hong, C. Laird, Cyclic Deformation Behavior of Cu-16 Atomic Percent Al Single Crystals-Part II: Cyclic Hardening and Slip Band Behavior, Mater Sci. Eng. A 128 (1990) 55-75.

DOI: 10.1016/0921-5093(90)90096-l

Google Scholar

[15] H. Kim, G. T. Kang, S.I. Hong, Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite, Metall. Mater. Trans. A 47 (2016) 2267-2276.

DOI: 10.1007/s11661-016-3363-4

Google Scholar