[1]
B. S. Murty, J. W. Yeh, S. Ranganathan, High-Entropy Alloys, Elsevier Science, (2014).
Google Scholar
[2]
Z. Y. Rao, X. Wang, J. Zhu, X. H. Chen, L. Wang, J. J. Si, Y. D. Wu, X. D. Hui, Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties, Intermetal. 77 (2016) 23-33.
DOI: 10.1016/j.intermet.2016.06.011
Google Scholar
[3]
J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[4]
B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[5]
F. Otto, Y. Yang, H. Bei, E. P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia 61 (2013) 2628-2638.
DOI: 10.1016/j.actamat.2013.01.042
Google Scholar
[6]
W. L. Wang, L. Hu, S. B. Luo, L. J. Meng, D. L. Geng, B. Wei, Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy, Intermetal. 77 (2016) 41-45.
DOI: 10.1016/j.intermet.2016.07.003
Google Scholar
[7]
L. De Caro, C. Giannini, L. Tapfer, H. -P. Schönherr, L. Däweritz, K. H. Ploog, Validity of vegard's rule for the lattice parameter and the stiffness elastic constant ratios of the AlGaAs ternary compound, Solid State Commun. 108 (1998) 77-81.
DOI: 10.1016/s0038-1098(98)00327-5
Google Scholar
[8]
S. I. Hong, J. Moon, S. K. Hong, H. S. Kim, Mater. Sci. Eng. A, Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy (2016) http: /dx. doi. org/10. 1016. j. msea. 2016. 11. 078.
DOI: 10.1016/j.msea.2016.11.078
Google Scholar
[9]
P. P. Bhattacharjee, G. D. Sathiaraj, M. Zaid, J. R. Gatti, C. Lee, C. W. TsaI, J. W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloy. Compd. 587 (2014) 544-552.
DOI: 10.1016/j.jallcom.2013.10.237
Google Scholar
[10]
Y. Zhou, Y. Zang, Y. Wang, G. Chen, Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties, Appl, Phys. Lett. 90 (2007) 181904-181904.
Google Scholar
[11]
B. Gludovatz, A. Hohenwarter, D. Cato or, E. H. Chang, E. P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
DOI: 10.1126/science.1254581
Google Scholar
[12]
M. A. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, P. Liaw, Fatigue Behavior of Al0. 5CoCrCuFeNi High Entropy Alloys, Acta Mater. 60 (2012) 5723-5734.
DOI: 10.1016/j.actamat.2012.06.046
Google Scholar
[13]
S. I. Hong, C. Laird, Mechanisms of slip mode modification in FCC solid solutions, Acta Metall. 38 (1990) 1581-1594.
DOI: 10.1016/0956-7151(90)90126-2
Google Scholar
[14]
S. I. Hong, C. Laird, Cyclic Deformation Behavior of Cu-16 Atomic Percent Al Single Crystals-Part II: Cyclic Hardening and Slip Band Behavior, Mater Sci. Eng. A 128 (1990) 55-75.
DOI: 10.1016/0921-5093(90)90096-l
Google Scholar
[15]
H. Kim, G. T. Kang, S.I. Hong, Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite, Metall. Mater. Trans. A 47 (2016) 2267-2276.
DOI: 10.1007/s11661-016-3363-4
Google Scholar