Method for the Determination of Hard Alloys’ Maximum Performance Temperature in the Context of the Metal-Cutting Tools’ Usage Quality Estimation Technique

Article Preview

Abstract:

The article seals with the study of hard alloy (WC-Co) crack resistance (fracture toughness), depending on the temperature. Three representatives of one-carbide hard alloys (WC 94% Co 6% (fine grain); WC 92%, Co 8%; and WC 85%, Co 15% alloys) were chosen to determine the temperature influence on the stress intensity factor. During the obtained dependences’ analysis, we revealed that the hard alloy maximum performance temperature could be determined by the maximum value of stress intensity factor KIC. The relation between the temperature of hard alloy (WC-Co) maximum crack resistance (fracture toughness) and the temperature of these materials’ maximum performance, is shown here as a result of experimental study of the dependence of impact resistance from temperature. In addition, the hard alloys’ maximum performance temperature determination technique is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-63

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. S. Ostapenko, D. S. Vasilega. An industrial and sociological research of consumers' requirements to lathing tools, Key Eng. Mater. 684 (2016) 429-434.

DOI: 10.4028/www.scientific.net/kem.684.429

Google Scholar

[2] E. V. Artamonov, M. S. Ostapenko, D. S. Vasilega. Improvement of efficiency of modular tooling systems application based on qualimetric evaluation, World Appl. Sci. J. 25(9) (2013) 1275-1279.

Google Scholar

[3] M. S. Ostapenko, D. S. Vasilega, Method for metal-cutting tool quality evaluation, Appl. Mech. Mater. 379 (2013) 49-55.

DOI: 10.4028/www.scientific.net/amm.379.49

Google Scholar

[4] D. S. Vasilega, M. S. Ostapenko. Efficiency improvement of metal lathing by using of the assembly machine tools quality evaluation technique, Key Eng. Mater. 684 (2016) 421-428.

DOI: 10.4028/www.scientific.net/kem.684.421

Google Scholar

[5] E. V. Artamonov, D. S. Vasilega, A. M. Tveryakov. Increasing machining efficiency of components made of hard-processing materials, Appl. Mech. Mater. 770 (2015) 34-39.

DOI: 10.4028/www.scientific.net/amm.770.34

Google Scholar

[6] M. S. Ostapenko, A. M. Tveryakov. Enhancement of the assembly lathing tools quality evaluation methodology, Key Eng. Mater. 684 (2016) 435-439.

DOI: 10.4028/www.scientific.net/kem.684.435

Google Scholar

[7] E. V. Artamonov, D. S. Vasilega, M. S. Ostapenko. Methods of considering reliability in the composite metal cutting tools' quality evaluation procedure for, Appl. Mech. Mater. 770 (2015) 216-220.

DOI: 10.4028/www.scientific.net/amm.770.216

Google Scholar

[8] Y. Klochkov, A. Its, I. Vasilyeva. Development of FMEA method with the purpose of quality assessment of can stock production, Key Eng. Mater. 684 (2016) 473-476.

DOI: 10.4028/www.scientific.net/kem.684.473

Google Scholar

[9] A. D. Makarov. Optimization of Cutting Processes, Mechanical Engineering, (1976), p.278.

Google Scholar

[10] E. V. Artamonov, D. V. Vasilyev. Determining the optimal cutting speed in turning by composite cutters on the basis of the chip. Russian Eng. Res. 34(6) (2014) 404-405.

DOI: 10.3103/s1068798x14060069

Google Scholar

[11] E. V. Artamonov, D. S. Vasilega, A. M. Tveryakov. Determining the hard-alloy cutting plates' maximum-performance temperature, Russian Eng. Res. 34(6) (2014) 402- 403.

DOI: 10.3103/s1068798x14060057

Google Scholar

[12] E. V. Artamonov, M. O. Chernyshov, T. E. Pomigalova, D. V. Vasilyev. Extending the life of replaceable cutting plates in composite tools, Russian Eng. Res. 35(1) (2015) 61-63.

DOI: 10.3103/s1068798x15010049

Google Scholar

[13] V. P. Astakhov, M. O. M. Osman. Correlations amongst Process Parameters in Metal Cutting and their Use for Establishing the Optimum Cutting Speed. J. Mater. Proc. Tech. 62 (1996) 175-179.

DOI: 10.1016/0924-0136(95)02225-2

Google Scholar

[14] S. Zvonov, Y. Klochkov. Computer-aided modelling of a latch die cutting in Deform -2D software system, Key Eng. Mater. 685 (2016) 811-815.

DOI: 10.4028/www.scientific.net/kem.685.811

Google Scholar