Influence of Annealing of Al-5Ti-1B Master Alloy on Hot Tearing of Cast Al-7Si-3Cu Alloy

Article Preview

Abstract:

Hot tearing is a common and severe defect encountered in aluminium alloys castings. It is affected by alloy composition as well as processing conditions and variables. In Al–7Si-3Cu presence of copper increases mechanical properties of the alloy, but it makes the alloy susceptible to hot tearing. The observations on the microstructures and the fracture surfaces propose that the hot tearing initiated at the grain boundaries and propagated along them through the thin liquid film. Grain refinement limits the hot tearing tendency of the Al-Si-Cu alloy. An attempt has been made to record the effect of annealed Al-5Ti-1B master alloy on minimizing hot tearing tendency in the gravity die cast of Al-7Si-3Cu alloys. It is observed that grain refining efficiency of Al-5Ti-1B master alloy is increased with increase in annealing temperature. This is attributed to the increased fraction of TiAl3 particles and the possible formation of (Ti,Al)B2 phase. Characterization study has been carried out by OM, SEM and XRD analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. D. Elia, C. Ravindran, Influence of grain refinement on hot tearing in B206 and A319 aluminum alloys, Trans. Indian Inst. Met. 62 (2009) 315–319.

DOI: 10.1007/s12666-009-0072-3

Google Scholar

[2] H. K. Kamga, D. Larouche, M. Bournane, A. Rahem, Hot tearing of aluminum – copper B206 alloys with iron and silicon additions, Mater. Sci. Eng. A. 527 (2010) 7413–7423.

DOI: 10.1016/j.msea.2010.08.025

Google Scholar

[3] J. Song, Z. Wang, Y. Huang, A. Srinivasan, F. Beckmann, K. U. Kainer, et al. , Hot tearing characteristics of Mg–2Ca–xZn alloys, J. Mater. Sci. 51 (2016) 2687–2704.

DOI: 10.1007/s10853-015-9583-y

Google Scholar

[4] A. K. Birru, D. B. Karunakar, M. M. Mahapatra, A study on hot tearing susceptibility of Al-Cu, Al-Mg, and Al-Zn alloys, Trans. Indian Inst. Met. 65 (2012) 97–105.

DOI: 10.1007/s12666-011-0112-7

Google Scholar

[5] A. Dissertation, Hot Tearing in Cast Aluminum Alloys : by, (2010).

Google Scholar

[6] A. Amerioon, M. Emamy, G. Ashuri, Investigation the Effect of Al-5Ti-1B Grain Refiner and T6 Heat Treatment on Tensile Properties of Al-8 % Mg, 11 (2015) 32–37.

DOI: 10.1016/j.mspro.2015.11.039

Google Scholar

[7] E. Aguirre-De La Torre, U. Afeltra, C. D. Gómez-Esparza, J. Camarillo-Cisneros, R. Pérez-Bustamante, R. Martínez-Sánchez, Grain refiner effect on the microstructure and mechanical properties of the A356 automotive wheels, J. Mater. Eng. Perform. 23 (2014).

DOI: 10.1007/s11665-013-0596-x

Google Scholar

[8] K. R. Cardoso, D. N. Travessa, A. G. Escorial, M. Lieblich, Effect of mechanical alloying and Ti addition on solution and ageing treatment of an AA7050 aluminium alloy, Mater. Res. 10 (2007) 199–203.

DOI: 10.1590/s1516-14392007000200017

Google Scholar

[9] W. Ding, T. Xia, W. Zhao, Y. Xu, Effect of Al-5Ti-C master alloy on the microstructure and mechanical properties of hypereutectic Al-20%Si alloy, Materials (Basel). 7 (2014) 1188–1200.

DOI: 10.3390/ma7021188

Google Scholar

[10] A. B. Pattnaik, S. Das, B. B. Jha, N. Prasanth, Effect of Al-5Ti-1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy, J. Mater. Res. Technol. 4 (2014) 171–179.

DOI: 10.1016/j.jmrt.2014.10.017

Google Scholar

[11] K. Venkateswarlu, S. K. Das, M. Chakraborty, B. S. Murty, Influence of thermo-mechanical treatment of Al Á 5Ti master alloy on its grain refining performance on aluminium, Mater. Sci. Eng. A. 351 (2003) 237–243.

DOI: 10.1016/s0921-5093(02)00842-0

Google Scholar

[12] K. Venkateswarlu, B. S. Murty, M. Chakraborty, Effect of hot rolling and heat treatment of Al – 5Ti – 1B master alloy on the grain refining efficiency of aluminium, 301 (2001) 180–186.

DOI: 10.1016/s0921-5093(00)01422-2

Google Scholar