A Systematic Testing Procedure to Investigate the Influence of Oxide Morphology, Composition and Thickness on Changes in the High Temperature Oxidation Kinetics of AISI 316L Stainless Steel

Article Preview

Abstract:

A systematic testing procedure has been employed to investigate the high temperature oxidation kinetics of AISI 316L. Thermo-gravimetric (TG) analysis was carried out at 950°C, 1050°C, 1150°C and 1250°C for 8h. Alongside this, isothermal furnace treatments were carried out on samples of the same material at the same temperatures for time periods of 0.5h, 1h, 2h, 4h and 8h. Changes in oxidation kinetics were observed on mass gain curves plotted from data derived from the TG analysis. When a change in oxidation kinetics was identified, the structure, thickness and composition of the oxides formed on the isothermal treatment samples at time periods before and after the change occurred could be studied. It was found that this systematic testing procedure provided a great deal of useful information allowing more meaningful conclusions to be made on the influence of oxide layer thickness, structure and composition on high temperature oxidation kinetics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Soleimani Dorcheh, R. N. Durham, M. C. Galetz. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600°C. Sol. Energ. Mater. Sol. Cells. 144(3) (2016) 109–16.

DOI: 10.1016/j.solmat.2015.08.011

Google Scholar

[2] A. Vesel, M. Mozetic, A. Drenik, Hauptman N, Balat-Pichelin M. High temperature oxidation of stainless steel AISI316L in air plasma. Appl. Surf. Sci. 255 (2008) 1759–1765.

DOI: 10.1016/j.apsusc.2008.06.017

Google Scholar

[3] H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron, et al. Characterization of the oxides formed at 1000°C on the AISI 316L stainless steel - Role of molybdenum. Mater. Chem. Phys. 111 (2008) 491-496.

DOI: 10.1016/j.matchemphys.2008.04.054

Google Scholar

[4] A. L. Marasco, D. J. Young. The oxidation of Iron-Chromium-Manganese alloys at 900°C. Oxid Met. 36(1-2) (1991) 157–174.

DOI: 10.1007/bf00938460

Google Scholar

[5] J. Piekoszewski, B. Sartowska, Barlak M, Konarski P, Dąbrowski L, Starosta W, et al. Improvement of high temperature oxidation resistance of AISI 316L stainless steel by incorporation of Ce–La elements using intense pulsed plasma beams. Surf. Coat. Technol. 206 (2011).

DOI: 10.1016/j.surfcoat.2011.03.104

Google Scholar

[6] A. Paúl, R. Sánchez, O. M. Montes, J. A. Odriozola. The role of silicon in the reactive-elements effect on the oxidation of conventional austenitic stainless steel. Oxid. Met. 67(1-2) (2007) 87–105.

DOI: 10.1007/s11085-006-9046-6

Google Scholar

[7] A. M. Huntz, A. Reckmann, C. Haut, C. Sévérac, M. Herbst, F. C. T. Resende, et al. Oxidation of AISI 304 and AISI 439 stainless steels. Mater. Sci. Eng. A. 447(1-2) (2007) 266–276.

DOI: 10.1016/j.msea.2006.10.022

Google Scholar

[8] T. D. Nguyen, J. Zhang, D. J. Young. Water vapour effects on corrosion of Fe-Cr and Fe-Cr-Ni alloys containing cerium and manganese in CO2 gas at 818°C. Corros. Sci. 89 (2014) 220–235.

DOI: 10.1016/j.corsci.2014.08.029

Google Scholar

[9] H. F. Lopez, H. Mendoza, D. Angel. Long term high temperature oxidation resistance of a nanoceria coated 316 SS under dry air conditions. Mater. Chem. Phys. 146 (2014) 204–211.

DOI: 10.1016/j.matchemphys.2013.11.053

Google Scholar

[10] Q. Jin, J. Li, Y. Xu, X. Xiao, W. Zhang, L. Jiang. High-temperature oxidation of duplex stainless steels S32101 and S32304 in air and simulated industrial reheating atmosphere. Corros. Sci. 52 (2010) 2846–2854.

DOI: 10.1016/j.corsci.2010.04.033

Google Scholar

[11] E. Frutos, P. Adeva, J. L. González-Carrasco, P. Pérez. Oxidation behavior of AISI 316 steel coated by hot dipping in an Al-Si alloy. Surf. Coatings. Technol. 236 (2013) 188–199.

DOI: 10.1016/j.surfcoat.2013.09.046

Google Scholar

[12] H. Buscail, S. El Messki, F. Riffard, S. Perrier, C. Issartel. Effect of pre-oxidation at 800 °C on the pitting corrosion resistance of the AISI 316L stainless steel. Oxid. Met. 75(1-2) (2011) 27–39.

DOI: 10.1007/s11085-010-9218-2

Google Scholar

[13] K. A. Habib, M. S. Damra, J. J. Saura, I. Cervera, J. Bellés. Breakdown and evolution of the protective oxide scales of AISI 304 and AISI 316 stainless steels under high-temperature oxidation. Int. J. Corros. 2011 (2011).

DOI: 10.1155/2011/824676

Google Scholar

[14] B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J. E. Svensson, L. G. Johansson. Oxidation of binary FeCr alloys (Fe-2. 25Cr, Fe-10Cr, Fe-18Cr and Fe-25Cr) in O 2 and in O 2 + H 2O environment at 600°C. Oxid. Met. 75(3-4) (2011) 183–207.

DOI: 10.1007/s11085-010-9229-z

Google Scholar

[15] T. Jonsson, B. Pujilaksono, H. Heidari, F. Liu, J. E. Svensson, M. Halvarsson, et al. Oxidation of Fe-10Cr in O2 and in O2+H2O environment at 600°C: A microstructural investigation. Corros. Sci. 75 (2013) 326–336.

DOI: 10.1016/j.corsci.2013.06.016

Google Scholar

[16] T. Jonsson, S. Karlsson, H. Hooshyar, M. Sattari, J. Liske, J. E. Svensson, et al. Oxidation After Breakdown of the Chromium-Rich Scale on Stainless Steels at High Temperature: Internal Oxidation. Oxid. Met. 85(5) (2016) 1–28.

DOI: 10.1007/s11085-016-9610-7

Google Scholar