Synthesis and Characterization of PVA/TiO2 Nanocomposite

Article Preview

Abstract:

A thin film of polyvinyl alcohol (PVA) and nanocomposite of PVA/TiO2 have been prepared by spin coating method at room temperature. The influence of titanium dioxide nanoparticles on the structure, optical, and functional group analysis of nanocomposite of polyvinyl alcohol/titanium dioxide was studied by using X-ray diffraction analysis, UV–vis spectroscopy and FTIR (Fourier Transform Infrared Spectroscopy). As some significant amount of titanium dioxide nanoparticles were added to the synthesis process of a thin film of PVA/TiO2 nanocomposite and it was found that electronic band gap of the polyvinyl alcohol decreases from 3.94 eV to 3.04 eV, and absorption wavelength shifted towards red. For titanium dioxide nanoparticles, the calculated value of band gap is 3.24 eV. The XRD peak of the PVA/TiO2 was obtained in between the peak of the titanium dioxide nanoparticles and polyvinyl alcohol. FTIR confirms the presence of bonds Ti-O, -OH , -CH2 , -CH3 and of a carbonyl group.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-247

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Paunović, A. Češnovar, A. Grozdanov, P. Makreski, E. Fidančevska, Preparation of nano-crystalline TiO2 by sol-gel method using titanium tetraisopropoxide (ttip) as a precursor, Adv. Nat. Sci. Theor. Appl. 1(2) (2012) 133-142.

DOI: 10.1115/1.4029112

Google Scholar

[2] V. Kaler, R. K. Duchaniya, U. Pandel, Synthesis of nano-titanium dioxide by sol-gel route, InAIP Conference Proceedings, (20127) (2016) 1724.

DOI: 10.1063/1.4945247

Google Scholar

[3] J. Ahmad, K. Deshmukh, M. Habib, M. B. Hägg, Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes, Arabian J. Sci. Eng. 39(10) (2014) 6805-6814.

DOI: 10.1007/s13369-014-1287-0

Google Scholar

[4] M. Kavitha, C. Gopinathan, P. Pandi, Synthesis and Characterization of TiO2 Nanopowders in Hydrothermal and Sol-Gel Method, Int. J. Adv. Res. Technol. 2(4) (2013) 102-108.

Google Scholar

[5] N. Sahu, R. K. Duchaniya, Synthesis of ZnO-CdO Nanocomposites, J. Mater. Sci. Surf. Eng. 1(1) (2013) 11-14.

Google Scholar

[6] D. Saini, R. K. Duchaniya, ZnO-CdS powder nanocomposite: synthesis, structural and optical characterization, J. Nano-and Electronic Phys. 5(3) (2013) 3015-3021.

Google Scholar

[7] Y. Zhu, L. Zhang, C. Gao, L. Cao, The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor, J. Mater. Sci. 35(16) (2000) 4049-4054.

Google Scholar

[8] A. Karami, Synthesis of TiO2 nano powder by the sol-gel method and its use as a photocatalyst, J. Iranian Chem. Soc. 7(2) (2010) S154-160.

DOI: 10.1007/bf03246194

Google Scholar

[9] D. H. Solomon, D. G. Hawthorne, Chemistry of Pigments and Fillers, John Wiley & Sons Inc., New York, (1983).

Google Scholar

[10] X. F. Zhou, D. B. Chu, S. W. Wang, C. J. Lin, Z. Q. Tian, New route to prepare nanocrystalline TiO2 and its reaction mechanism, Mater. Res. Bull. 37(11) (2002) 1851-1857.

DOI: 10.1016/s0025-5408(02)00863-2

Google Scholar

[11] F. Sayilkan, M. ASİLTÜRK, H. Sayilkan, Y. Önal, M. Akarsu, E. Arpaç, Characterization of TiO2 Synthesized in Alcohol by a Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst, Turkish J. Chem. 29(6) (2006) 697-706.

Google Scholar

[12] A. Merouani, H. Amardjia-Adnani, Spectroscopic FT-IR study of TiO2 films prepared by sol-gel method, Int. Sci. J. Altern. Energy Ecol. 6(62) (2008) 151-154.

Google Scholar

[13] M. J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, A. Zecchina, Photoactive TiO2 films on cellulose fibres: synthesis and characterization, J. Photochem. Photobiol. A: Chem. 189(2) (2007) 286-294.

DOI: 10.1016/j.jphotochem.2007.02.015

Google Scholar

[14] K. S. Lin, H. W. Cheng, W. R. Chen, J. F. Wu, Synthesis, characterization and application of anatase-typed titania nanoparticles, J. Environ. Eng. Manag. 20(2) (2010) 69-76.

Google Scholar

[15] S. Cao, H. Zhang, Y. Song, J. Zhang, H. Yang, L. Jiang, Y. Dan, Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications, Appl. Surf. Sci. 342 (2015) 55-63.

DOI: 10.1016/j.apsusc.2015.02.139

Google Scholar

[16] A. Maurya, P. Chauhan, Synthesis and characterization of sol–gel derived PVA-titanium dioxide (TiO2) nanocomposite, Polym. Bull. 68(4) (2012) 961-972.

DOI: 10.1007/s00289-011-0589-6

Google Scholar

[17] M. Vishwas, K. N. Rao, D. N. Priya, A. M. Raichur, R. P. Chakradhar, K. Venkateswarlu, Effect of TiO2 Nano-particles on Optical, Electrical and Mechanical Properties of Poly (Vinyl alcohol) Films, Procedia Mater. Sci. 5 (2014) 847-854.

DOI: 10.1016/j.mspro.2014.07.370

Google Scholar

[18] O. G. Abdullah, S. B. Aziz, K. M. Omer, Y. M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite, J. Mater. Sci. Mater. Electron. 26(7) (2015) 5303-5309.

DOI: 10.1007/s10854-015-3067-3

Google Scholar

[19] P. K. Khanna, N. Singh, S. Charan, Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA, Mater. Let. 61(25) (2007) 4725-4730.

DOI: 10.1016/j.matlet.2007.03.064

Google Scholar

[20] M. Ren, F. H. Frimmel, G. Abbt-Braun, Multi-cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (PVA/TiO2) hybrid film, J. Molecul. Catal. A: Chem. 400 (2015) 42-48.

DOI: 10.1016/j.molcata.2015.02.004

Google Scholar

[21] S. Sugumaran, C. S. Bellan, Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: Optical and dielectric properties, Optik-Int. J. Light Electron Opt. 125(18) (2014) 5128-5133.

DOI: 10.1016/j.ijleo.2014.04.077

Google Scholar

[22] T. Ranganayaki, M. Venkatachalam, T. Vasuki, S. L. Shankar, Preparation and characterization of nanocrystalline TiO2 thin films prepared by sol–gel spin-coating method, J. Innov. Res. Sci. 3(10) (2014) 16707-16713.

DOI: 10.15680/ijirset.2014.0310042

Google Scholar