Morphology and Mechanical Properties of Poly(Lactic Acid) and Propylene-Ethylene Copolymer Blends: Effect of Organoclay Types

Article Preview

Abstract:

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-274

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mallick, P. Kar, B. B. Khatua, Morphology and properties of nylon 6 and high density polyethylene blends in presence of nanoclay and PE-g-MA, J. Appl. Polym. Sci. 123(3) (2012) 1801-1811.

DOI: 10.1002/app.34648

Google Scholar

[2] M. Yousfi, J. Soulestin, B. Vergnes, M. -F. Lacrampe, P. Krawczak, Compatibilization of immiscible polymer blends by organoclay: Effect of nanofiller or organo-modifier?, Macromol. Mater. Eng. 298(7) (2013) 757-770.

DOI: 10.1002/mame.201200138

Google Scholar

[3] T. Nazari, H. Garmabi, Effect of organoclays on the rheological and morphological properties of poly(acrylonitrile-butadiene-styrene)/poly(methyl methacrylate)/clay nanocomposites, Polym. Compos. 33(11) (2012) 1893-(1902).

DOI: 10.1002/pc.22329

Google Scholar

[4] T. Nazari, H. Garmabi, A. Arefazar, Effect of clay modification on the morphology and the mechanical/physical properties of ABS/PMMA blends, J. Appl. Polym. Sci. 126(5) (2012) 1637-1649.

DOI: 10.1002/app.36953

Google Scholar

[5] S. S. Ray, M. Bousmina, Compatibilization Efficiency of organoclay in an immiscible polycarbonate/poly(methyl methacrylate) blend, Macromol. Rapid Commun. 26(6) (2005) 450-455.

DOI: 10.1002/marc.200400586

Google Scholar

[6] Y. Li, H. Shimizu, Co-continuous polyamide 6 (PA6)/acrylonitrile-butadiene-styrene (ABS) nanocomposites, Macromol. Rapid Commun. 26(9) (2005) 710-715.

DOI: 10.1002/marc.200400654

Google Scholar

[7] P. Choudhary, S. Mohanty, S. K. Nayak, L. Unnikrishnan, Poly(L-lactide)/polypropylene blends: Evaluation of mechanical, thermal, and morphological characteristics, J. Appl. Polym. Sci. 121(6) (2011) 3223-3237.

DOI: 10.1002/app.33866

Google Scholar

[8] A. Hasook, S. Tanoue, Y. Iemoto, Characterization and mechanical properties of poly(lactic acid)/poly(e-caprolactone)/organoclay nanocomposites prepared by melt compounding, Polym. Eng. Sci. 46(8) (2006) 1001-1007.

DOI: 10.1002/pen.20579

Google Scholar

[9] S. Wacharawichanant, P. Amorncharoen, R. Wannasirichoke, Effects of compatibilizers on morphology and properties of polyoxymethylene/polypropylene blends, Polymer-Plastics Technol. Eng. 54(13) (2015) 1349-1357.

DOI: 10.1080/03602559.2014.996903

Google Scholar

[10] T. Baouz, F. Rezgui, U. Yilmazer, Ethylene-methyl acrylate-glycidyl methacrylate toughened poly(lactic acid) nanocomposites, J. Appl. Polym. Sci. 128(5) (2013) 3193-3204.

DOI: 10.1002/app.38529

Google Scholar