Mechanical and Thermal Properties of Epoxy Composites Containing Amine-Modified Silica Nanoparticles

Article Preview

Abstract:

Epoxy/silica composites were prepared using aminopropyl triethoxysilane (APTES)-modified silica nanoparticles in the sol state. Different sizes of silica particles were synthesized and they were applied into the epoxy/silica composites with different compositions. The mechanical and thermal properties of the composites were investigated and compared with those of pristine epoxy composite. The structure and morphology of the modified silica nanoparticles and epoxy/silica composites were analyzed using field emission scanning electron microscope. The flexural modulus and tensile strength of the epoxy/silica composites were investigated by universal test machine (UTM). Also, glass transition and thermal stability were investigated using thermomechanical analyzer (TMA). Sizes of silica particles in sol state were controlled by using different concentration of the accelerator. The tensile strength of epoxy/silica composites containing 20 wt% of 30 nm silica was found to be 37.98 MPa. In addition, the glass transition temperature (Tg) decreased with increasing silica particle sizes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-268

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Yasmin, J. J. Luo, J. L. Abot, I. M. Daniel, Mechanical and thermal behaviour of clay/epoxy nanocomposites, Compos. Sci. Technol. 66(14) (2006) 2415-2422.

DOI: 10.1016/j.compscitech.2006.03.011

Google Scholar

[2] M. Liu, B. Guo, M. Du, Y. Lei, D. Jia, Natural inorganic nanotubes reinforced epoxy resin nanocomposites, J. Polymer Res. 15(3) (2008) 205-212.

DOI: 10.1007/s10965-007-9160-4

Google Scholar

[3] S. Deng, J. Zhang, L. Ye, J. Wu, Toughening epoxies with halloysite nanotubes, Polymer, 49(23) (2008) 5119-5127.

DOI: 10.1016/j.polymer.2008.09.027

Google Scholar

[4] S. C. Shiu, J. L. Tsai, Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites, Compos. Part B: Eng. 56 (2014) 691-697.

DOI: 10.1016/j.compositesb.2013.09.007

Google Scholar

[5] J. Zhu, S. Wei, A. Yadav, Z. Guo, Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers, Polymer, 51(12) (2010) 2643-2651.

DOI: 10.1016/j.polymer.2010.04.019

Google Scholar

[6] P. Guo, X. Chen, X. Gao, H. Song, H. Shen, Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites, Compos. Sci. Technol. 67(15-16) (2007) 3331-3337.

DOI: 10.1016/j.compscitech.2007.03.026

Google Scholar

[7] D. Sun, C. C. Chu, H. J. Sue, Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay, Chem. Mater. 22(12) (2010) 3773-3778.

DOI: 10.1021/cm1009306

Google Scholar

[8] H. J. Kim, D. H. Jung, J. I. Cifuentes, K. Y. Rhee, D. Hui, Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder, Compos. Part B: Eng. 43(4) (2012) 1743-1748.

DOI: 10.1016/j.compositesb.2011.12.010

Google Scholar

[9] M. Sajjad, B. Feichtenschlager, S. Pabisch, J. Svehla, T. Koch, S. Seidler, H. Perterlik, G. Kickelbick, Study of the effect of the concentration, size and surface chemistry of zirconia and silica nanoparticle fillers within an epoxy resin on the bulk properties of the resulting nanocomposites, Polymer Int. 61(2) (2012).

DOI: 10.1002/pi.3183

Google Scholar

[10] W. Yu, J. Fu, X. Dong, L. Chen, H. Jia, L. Shi, Highly populated and nearly monodispersed nanosilica particles in an organic medium and their epoxy nanocomposites, ACS Appl. Mater. Interf. 5(18) (2013) 8897-8906.

DOI: 10.1021/am402845d

Google Scholar

[11] D. H. Lee, D. H. Kim, Effects of nano silica and siloxane on properties of epoxy composites for adhesion of micro electronic device, Kor. Chem. Eng. Res. 47(3) (2009) 332-336.

Google Scholar

[12] J. S. Jang, B. Bouveret, J. Suhr, R. F. Gibson, Combined numerical/experimental investigation of particle diameter and interphase effects on coefficient of thermal expansion of SiO2/epoxy nanocomposites, Polymer Compos. 33(8) (2012) 1415-1423.

DOI: 10.1002/pc.22268

Google Scholar

[13] E. Bakhshandeh, S. Sobhani, A. Jannesari, A. S. Pakdel, M. G. Sari, M. R. Saeb, Structure-property relationship in epoxy-silica hybrid nanocomposites: The role of organic solvent in achieving silica domains, J. Vinyl Additive Technol. 21(4) (2015).

DOI: 10.1002/vnl.21414

Google Scholar

[14] A. Afzal, H. M. Siddiqi, A comprehensive study of the bicontinuous epoxy-silica hybrid polymers: I. Synthesis, characterization and glass transition, Polymer 52(6) (2011) 1345-1355.

DOI: 10.1016/j.polymer.2011.01.046

Google Scholar

[15] S. B. Lee, H. J. Lee, I. K. Hong, Diluent filler particle size effect for thermal stability of epoxy type resin, J. Ind. Eng. Chem. 18(2) (2012) 635-641.

DOI: 10.1016/j.jiec.2011.11.030

Google Scholar

[16] K. Chen, C. Tian, A. Lu, Q. Zhou, X. Jia, J. Wang, Effect of SiO2 on rheology, morphology, thermal, and mechanical properties of high thermal stable epoxy foam, J. Appl. Polymer 131(7) (2014) 40068.

DOI: 10.1002/app.40068

Google Scholar

[17] A. Afzal, H. M. Siddiqi, N. Iqbal, Z. Ahmad, The effect of SiO2 filler content and its organic compatibility on thermal stability of epoxy resin, J. Therm. Anal. Calorim. 111(1) (2013) 247-252.

DOI: 10.1007/s10973-012-2267-9

Google Scholar

[18] H. R. Lee, B. Seo, Preparation and gas permeation properties of silica membranes on porous stainless steel-tube supports, Membr. J. 24(3) (2014) 177-184.

Google Scholar