Crystallization and Thermal Degradation of Green Nanocomposites Based on Lignin Coated Cellulose Nanocrystals and Poly(Lactic Acid)

Article Preview

Abstract:

Cellulose is almost inexhaustible source of raw material comprising at least one-third of all biomass matter. Through deconstruction of cellulose hierarchical structure can be extracted highly crystalline cellulose nanocrystals (CNC) with impressive properties. However, the main barrier in the processing of the nanocomposites based on CNC is their inhomogeneous dispersion and distribution in the non-polar polymer matrix. In this paper is this problem addressed by use of novel hydrophobic lignin coated CNC as a biobased nucleation agents in poly (lactic acid) (PLA) nanocomposites. These green nanocomposites based on natural plant derived substances have enormous potential to replace materials originated from non-renewable resources and show promise of providing degradation back into the environment when they are no longer needed. Resulted composites prepared by twin screw extrusion and injection moulding were characterized by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The addition of L-CNC (1, 2 and 3 wt. %) into PLA increased melt crystallization enthalpy and decreases the cold crystallization enthalpy. The degree of crystallinity (cc) increased from 5.6 % (virgin PLA) to 8.5 % (PLA/1-L-CNC), 10.3 % (PLA/2-L-CNC) and 10.7 % (PLA/3-L-CNC). The wide range of degradation temperatures of lignin coating has been observed starting at 100 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-261

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev. 40(7) (2011) 3941-3994.

DOI: 10.1039/c0cs00108b

Google Scholar

[2] C. Stevens, J. Müssig, Industrial applications of natural fibres: structure, properties and technical applications, vol. 10. John Wiley & Sons, (2010).

Google Scholar

[3] G. A. Smook, Handbook for Pulp & Paper Technologists, 3rd edition, Angus Wilde Publications, Inc., (2002).

Google Scholar

[4] S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Rous, J. Njuguna, E. Nassiopoulos, Cellulose-Based Bio- and Nanocomposites: A Review, Int. J. Polym. Sci., 2011 (2011).

DOI: 10.1155/2011/837875

Google Scholar

[5] K. Nelson, T. Retsina, M. Iakovlev, A. van Heiningen, Y. Deng, J. A. Shatkin, A. Mulyadi, American Process: Production of Low Cost Nanocellulose for Renewable, Adv. Mater. Appl. Mater. Res. Manuf. Springer, 224 (2016) 267-302.

DOI: 10.1007/978-3-319-23419-9_9

Google Scholar

[6] A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Mater. Today, 16(6) (2013) 220-227.

DOI: 10.1016/j.mattod.2013.06.004

Google Scholar

[7] M. Borůvka, P. Lenfeld, Extraction of cellulose nanocrystals as a potential reinforcing material for poly(lactic acid) biocomposites, NANOCON 2015 - 7th International Conference on Nanomaterials - Research and Application, Conference Proceedings, (2015).

Google Scholar

[8] M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, H. M. Zeng, The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites, Compos. Sci. Technol. 61(10) (2001) 1437-1447.

DOI: 10.1016/s0266-3538(01)00046-x

Google Scholar

[9] S. Kalia, B. Kaith, I. Kaur, Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology, Springer, (2011).

DOI: 10.1007/978-3-642-17370-7

Google Scholar

[10] M. Ago, K. Okajima, J. E. Jakes, S. Park, O. J. Rojas, Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals, Biomacromolecules, 13(3) (2012) 918-926.

DOI: 10.1021/bm201828g

Google Scholar

[11] V. Ugartondo, M. Mitjans, M. P. Vinardell, Comparative antioxidant and cytotoxic effects of lignins from different sources, Bioresour. Technol. 99(14) (2008) 6683-6687.

DOI: 10.1016/j.biortech.2007.11.038

Google Scholar

[12] J. M. Cruz, J. M. Domínguez, H. Domínguez, J. C. Parajó, Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials, J. Agric. Food Chem. 49(5) (2001) 2459-2464.

DOI: 10.1021/jf001237h

Google Scholar

[13] K. Toh, S. Nakano, H. Yokoyama, K. Ebe, K. Gotoh, H. Noda, Anti-deterioration effect of lignin as an ultraviolet absorbent in polypropylene and polyethylene, Polym. J. 37(8) (2005) 633-635.

DOI: 10.1295/polymj.37.633

Google Scholar

[14] C. Reti, M. Casetta, S. Duquesne, S. Bourbigot, R. Delobel, Flammability properties of intumescent PLA including starch and lignin, Polym. Adv. Technol. 19(6) (2008) 628-635.

DOI: 10.1002/pat.1130

Google Scholar

[15] A. Pei, Q. Zhou, L. A. Berglund, Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects, Compos. Sci. Technol. 70(5) (2010) 815-821.

DOI: 10.1016/j.compscitech.2010.01.018

Google Scholar

[16] A. K. Mohanty, M. Misra, L. T. Drzal, Natural fibers, biopolymers, and biocomposites, CRC Press, (2005).

DOI: 10.1201/9780203508206.ch1

Google Scholar

[17] E. Lizundia, J. L. Vilas, L. M. León, Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites, Carbohydr. Polym. 123 (2015) 256-265.

DOI: 10.1016/j.carbpol.2015.01.054

Google Scholar

[18] D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, S. Jeelani, Extraction and characterization of lignin from different biomass resources, J. Mater. Res. Technol. 4(1) (2015) 26-32.

DOI: 10.1016/j.jmrt.2014.10.009

Google Scholar