MWCNT from Carbon Black: Effect of Current Variation and Arc Application Time

Article Preview

Abstract:

Carbon black can be used as a raw material to synthesize multi walled carbon nanotubes (MWCNTs). The present study focuses on synthesis of MWCNTs from carbon black using pulsed arc discharge method in Argon atmosphere. The morphological changes during conversion from carbon black to carbon nanotubes by varying arc current and arc application time is investigated. Scanning Electron Micrographs of the deposited carbon nanostructures suggest that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.As we kept increasing arc current the granular structure of Carbon black transform to flakes structure and then to rigid rod like structure before getting finally converted to MWCNT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-353

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348) (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Sami-Ullah, S., Waqar, S. M. H., Hussain, F., & Ali, A, Synthesis of Single and Multi Walled Carbon Nanotubes by Improved Arc Discharge Method, Key Engineering Materials. 510(2012) 124-131. Trans Tech Publications.

DOI: 10.4028/www.scientific.net/kem.510-511.124

Google Scholar

[3] Arora, Neha, and N. N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond and Related Materials 50 (2014) 135-150.

DOI: 10.1016/j.diamond.2014.10.001

Google Scholar

[4] E. I. Waldorff, A. M. Waas, P. P. Friedmann, M. Keidar, Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure, J. Appl. Phys. 95(5) (2004) 2749-2754.

DOI: 10.1063/1.1642737

Google Scholar

[5] S. P. Doherty, R. P. H. Chang, Synthesis of multiwalled carbon nanotubes from carbon black, Appl. Phys. Lett. 81(13) (2002) 2466-2468.

DOI: 10.1063/1.1509470

Google Scholar

[6] S. Kishinevsky, S. I. Nikitenko, D. M. Pickup, E. R. van-Eck, A. Gedanken, Catalytic transformation of carbon black to carbon nanotubes, Chem. Mater. 14(11) (2002) 4498-4501.

DOI: 10.1021/cm025598j

Google Scholar

[7] D. B. Buchholz, S. P. Doherty, R. P. H. Chang, Mechanism for the growth of multiwalled carbon-nanotubes from carbon black, Carbon, 41(8) (2003) 1625-1634.

DOI: 10.1016/s0008-6223(03)00110-6

Google Scholar

[8] H. Lange, M. Bystrzejewski, A. Huczko, Influence of carbon structure on carbon nanotube formation and carbon arc plasma, Diam. Relat. Mater. 15(4) (2006) 1113-1116.

DOI: 10.1016/j.diamond.2005.11.026

Google Scholar

[9] Z. G. Chen, F. Li, W. C. Ren, H. Cong, C. Liu, G. Q. Lu, H. M. Cheng, Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source, Nanotech. 17(13) (2006) 3100.

DOI: 10.1088/0957-4484/17/13/003

Google Scholar

[10] J. B. Donnet, H. Oulanti, T. Le Huu, Mechanism growth of multiwalled carbon nanotubes on carbon black, Diam. Relat. Mater. 17(7) (2008) 1506-1512.

DOI: 10.1016/j.diamond.2008.01.001

Google Scholar

[11] A. Hekmat-Ardakan, Y. Alinejad, A. Shahverdi, G. Soucy, Experimental and thermochemical evaluation of induction thermal plasma grown single-walled carbon nanotube synthesized by commercial carbon blacks with different sulfur content, Thermochimica Acta. 565 (2013).

DOI: 10.1016/j.tca.2013.04.035

Google Scholar

[12] V. Asokan, D. Velauthapillai, R. Løvlie, D. N. Madsen, Effect of substrate and catalyst on the transformation of carbon black into nanotubes, J. Mater. Sci.: Mater. Electron. 24(9) (2013) 1-9.

DOI: 10.1007/s10854-013-1233-z

Google Scholar

[13] V. Asokan, D. Madsen, D. Velauthapillai, V. Myrseth, P. Kosinski, Effect of Temperature on the Transformation of Carbon Black into Nanotubes, Advanced Materials Research. 875-877(2014) 1565-1571.

DOI: 10.4028/www.scientific.net/amr.875-877.1565

Google Scholar

[14] Arora, Neha, and N. N. Sharma, Sustained arc temperature: better marker for phase transformation of carbon black to multiwalled carbon nanotubes in arc discharge method, Materials Research Express. 3(10) (2016) 105030.

DOI: 10.1088/2053-1591/3/10/105030

Google Scholar

[15] T. Sugai, H. Omote, S. Bandow, N. Tanaka, H. Shinohara, Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge, J. Chem. Phys. 112 (2000) 6000.

DOI: 10.1063/1.481172

Google Scholar

[16] T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, H. Shinohara, S. Bandow, New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge, Nano Lett. 3(6) (2003) 769-773.

DOI: 10.1021/nl034183+

Google Scholar

[17] N. Parkansky, R. L. Boxman, B. Alterkop, I. Zontag, Y. Lereah, Z. Barkay, Single-pulse arc production of carbon nanotubes in ambient air, J. Phys. D: Appl. Phys. 37(19) (2004) 2715.

DOI: 10.1088/0022-3727/37/19/015

Google Scholar

[18] Y. Y. Tsai, J. S. Su, C. Y. Su, A novel method to produce carbon nanotubes using EDM process, Int. J. Mach. Tools Manuf. 48(15) (2008) 1653-1657.

DOI: 10.1016/j.ijmachtools.2008.07.005

Google Scholar

[19] K. K. Kia, F. Bonabi, Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design, Rev. Sci. Instrum. 83(12) (2012) 123907-123907.

DOI: 10.1063/1.4772575

Google Scholar