Microwave-Ultrasonic Synergistic Extraction of Crude Se-Polysaccharides from Se-Enriched Tea

Article Preview

Abstract:

Se-polysaccharides are organic Se-conjugated biological macromolecules with stronger biological activities than Se-free polysaccharides. Se-polysaccharides, as a kind of biological materials, can be extracted from Se-enriched tea and can increase the added value of tea production. Microwave–ultrasonic synergistic extraction exhibits the advantages of microwave and ultrasonic extraction and thus provides an economic and effective path for utilization of Se-polysaccharides. In this study, Se-polysaccharides were extracted from Se-enriched tea by microwave–ultrasonic synergistic method for the first time. The optimal condition was determined through single-factor experiment and L9(43) orthogonal experiment. Results showed that the optimal condition comprised the following: ratio of solvent to material of 20:1, microwave power of 250 W, extraction temperature of 60 °C, and extraction time of 210 s; under this condition, the extraction rate of Se-polysaccharides reached the maximum value of 4.56%. This study shows that microwave–ultrasonic synergistic extraction is an efficient technology for extracting Se- polysaccharides from Se-enriched tea.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-366

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Chopade, A. Phatak, A. Upaganlawer, A. Tankar, Pharmacog, Green tea (Camellia sinensis): chemistry, traditional, medicinal uses and its pharmacological activities-a review, Pharmacol. Rev. 2 (2008) 157–162.

Google Scholar

[2] U. Wei, J. Z. Lu, J. Ren, H. U. Yaoxing, Optimization of extracting method for tea polysaccharide, J, Wuhan Bioeng. Inst. 3 (2007) 201–204.

Google Scholar

[3] T. Xia, S. Shi, X. Wan, Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion, J. Food Eng. 74(4) (2006) 557–560.

DOI: 10.1016/j.jfoodeng.2005.03.043

Google Scholar

[4] S. P. Nie, M. Y. Xie, A review on the isolation and structure of tea polysaccharides and their bioactivities, Food Hydrocolloids. 25(2) (2011) 144–149.

DOI: 10.1016/j.foodhyd.2010.04.010

Google Scholar

[5] X. Wei, F. Mao, X. Cai, Y. Wang, Composition and bioactivity of polysaccharides from tea seeds obtained by water extraction, Int. J. Biol. Macromol. 49(4) (2011) 587–590.

DOI: 10.1016/j.ijbiomac.2011.06.016

Google Scholar

[6] Y. Wang, Z. Yang, X. Wei, Antioxidant activities potential of tea polysaccharide fractions obtained by ultra filtration, Int. J. Biol. Macromol. 50(3) (2012) 558–564.

DOI: 10.1016/j.ijbiomac.2011.12.028

Google Scholar

[7] L. Guo, X. Du, J. Lan, Q. Liang, Study on molecular structural characteristics of tea polysaccharide, Int. J. Biol. Macromol. 47(2) (2011) 244–249.

Google Scholar

[8] X. R. Wang, S. G. Deng, J. Q. Kan, Research progress on tea polysaccharide, Cereals & Oils. 6 (2006) 43–46.

Google Scholar

[9] H. X. Chen, M. Zhang, B. J Xie, Components and antioxidant activity of polysaccharide conjugate from green tea, Food Chem. 90(1-2) (2005) 17–21.

DOI: 10.1016/j.foodchem.2004.03.001

Google Scholar

[10] S. R. Stapleton, Selenium: an insulin mimetic, Cell. Mol. Life Sci. 57(13-14) (2000) 1874–1879.

DOI: 10.1007/pl00000669

Google Scholar

[11] Rayman, P. Margaret, The importance of Selenium to human health, Lancet. 356(9225) (2000) 233–241.

DOI: 10.1016/s0140-6736(00)02490-9

Google Scholar

[12] M. J. Rock, R. L. Kincaid, G. E. Carstens, Effects of prenatal source and level of dietary Selenium on passive immunity and thermometabolism of newborn lambs, Small Ruminant Res. 40(2) (2001) 129–138.

DOI: 10.1016/s0921-4488(01)00167-5

Google Scholar

[13] W. C. Hawkes, D. S. Kelley, P. C. Taylor, The effects of dietary Selenium on the immune system in healthy men, Biol. Trace Elem. Res. 81(3) (2001) 189–213.

DOI: 10.1385/bter:81:3:189

Google Scholar

[14] X. Yuan, C. Tang, Lead effect on DNA and albumin in chicken blood and the protection of Selenium nutrition, J. Environ. Sci. Health A. 34(9) (1999) 1875–1887.

DOI: 10.1080/10934529909376935

Google Scholar

[15] D. J. Hoffman, G. Heinz, Effects of mercury and Selenium on glutathione metabolism and oxidative stress in mallard ducks, Toxicol. Chem. 17(2) (1998) 161–166.

DOI: 10.1002/etc.5620170204

Google Scholar

[16] M. Navarro-Alarcon, C. Cabrera-Vique, Selenium in food and the humanbody: a review, Sci. Total Environ. 400(1-3) (2008) 115–141.

DOI: 10.1016/j.scitotenv.2008.06.024

Google Scholar

[17] J. Fan, J. Zhang, Q. Tang, Y. Liu, A. Zhang, Y. Pan, Structural elucidation of a neutral fuco galactan from the mycelium of Coprinus comatus, Carbohyd. Res. 341 (2006) 1130–1134.

DOI: 10.1016/j.carres.2006.03.039

Google Scholar

[18] W. X. Fang, P. W. Wu, R. Z. Hu, Geochemical research of the impact of Se-Cu-Mo-V-bearing coal layers on the environment in Pingli County, Shaanxi Province, China, J. Geochem. Explor. 80(1) (2003) 105–115.

DOI: 10.1016/s0375-6742(03)00186-9

Google Scholar

[19] A. L. Molan, A. M. Faraj, Effect of Selenium-rich green tea extract on the course of sporulation of Eimeria oocysts, J. Dental Medical Sci. 14(4) (2015) 68–74.

Google Scholar

[20] X. Shen, L. Nie, H. Liu, N. Wu, Effects of Zinc and Selenium Rich Green Tea of Fenggang in Guizhou Province on Mouse Antioxidant Ability, J. Guiyang Med. Coll. 39 (2014) 642–645.

Google Scholar

[21] L. M. Wang, W. S. Xia, Optimization of extraction parameters for tea polysaccharides, Food Sci. 26 (2005) 171–174.

Google Scholar

[22] H. Li, L. Ma, S. J. Zhang, Extraction of tea polysaccharides by microwave technique, Life Sci. Instrum. 8 (2010) 50–53.

Google Scholar

[23] Y. C. Huang, Y. F. Ma, Q. R. Xie, X. Y. Huang, Y. N. Huang, Study on effects of ultrasonic on extracion of tea polysaccharide and changes of molecular weight, Food Sci. 28 (2007) 170–173.

Google Scholar

[24] B. Q. Fu, M. Xie, P. Zhou, S. Nie, Y. Wang, The extraction of tea polysaccharide by cellulase degradation, J. Wuxi Univ. Light Ind. 21 (2002) 362–366.

Google Scholar

[25] D. M. Wu, T. T. Gao, H. X. Yang, Y. Du, C. Li, L. Wei, T. Y. Zhou, J. M. Lu, H. T. Bi, Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from Nitraria tangutorun Bobr. Juice by-products. Ind. Crop. Prod. 66 (2015).

DOI: 10.1016/j.indcrop.2014.12.054

Google Scholar

[26] T. Wang, W. Li, H. W. Chen, X. L. Chen, J. J. Diao, Microwave-ultrasonic assisted extraction of Cordycepin from cultured mycelia of Cordyceps militaris, Food Sci. 31(10) (2010) 86–90.

Google Scholar

[27] S. Kaiser, S. G. Verza, R. C. Moraes, V. Pittol, E. Maribe, C. Penaloza, G. G. Ortega, Extraction optimization of polyphenols: oxindole alkaloids and quinovic acid glycosides from cat's claw bark by Box-Behnken design. Ind. Crops. Prod. 48 (2013).

DOI: 10.1016/j.indcrop.2013.04.026

Google Scholar

[28] H. E. A. Tinsley, S. D. Brown, Handbook of applied multivariate statistics and mathematical modeling. Academic Press, (2000).

Google Scholar

[29] E. Vazquez-Delfin, D. Robledo, Y. Freile-Pelegrin, Microwave-assisted extraction of the Carrageenan from hypnea musciformis (Cystocloniaceae, Rhodophyta), J. Appl. Phys. 26(2) (2014) 901–907.

DOI: 10.1007/s10811-013-0090-8

Google Scholar

[30] M. A. Rostagno, M. Palma, C. G. Barroso, Ultrasound-assisted extractionof soy isoflavones, J. Chromatogr. A. 1012(2) (2003) 119–128.

DOI: 10.1016/s0021-9673(03)01184-1

Google Scholar

[31] J. Chandrapala, C. M. Oliver, S. Kentish, M. Ashokkumar, Use of power ultrasound to improve extraction and modify phase transitions in food processing, Food Rev. Int. 29(1) (2013) 67–91.

DOI: 10.1080/87559129.2012.692140

Google Scholar

[32] Z. Ying, X. Han, J. Li, Ultrasound-assisted extraction of polysaccharides from mulberry leaves, Food Chem. 127(3) (2011) 1273–1279.

DOI: 10.1016/j.foodchem.2011.01.083

Google Scholar

[33] L. E. Garcia-Ayuso, M. D. L. de Castro, Employing focused microwaves to counteract conventional Soxhlet extraction drawbacks, TrAC-Trends Anal. Chem. 20(1) (2001) 28–34.

DOI: 10.1016/s0167-2940(01)90089-5

Google Scholar