Synthesis and Characterization of Monodisperse Magnetite Nanoparticles by Hydrothermal Method

Article Preview

Abstract:

Monodisperse nanoparticles are materials that are not agglomerate. The good characteristic of these materials is the dispersity in water, so they can better react with target pollutants. Accordingly, in this work, the monodisperse magnetite nanoparticles with the superparamagnetic property were synthesized and characterized. The hydrothermal method with the iron compound and polymer as precursors was conducted. The magnetic nanoparticles were characterized by several techniques including X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, and vibrating sample magnetometer. The saturation magnetization (Ms) value, the coercivity (Hc), and the retentivity (Mr) were measured to demonstrate the paramagnetic behavior of the monodisperse magnetite nanoparticles. The results showed that the Fe3O4 nanoparticle were obtained at 200 °C for 16 h. The particles are monodispersed with the size approximately in the range of 60 - 250 nm as confirmed by FE-SEM and TEM images. These are the single grain and had the spherical shape similar to a blackberry. The saturation magnetization of 17.287 emu/g and ratio of retentivity to saturation magnetization (Mr/Ms) characterized the squareness of the hysteresis loops was 0.03653. It can be indicated that the Fe3O4 nanoparticles had superparamagnetic behavior. This property of Fe3O4 nanoparticles can draw pollutants to absorb on the surface of these nanomaterials. Then adsorbed pollutants can be easily removed by separating the Fe3O4 materials from water. This technique can be applied further in water treatment and pollutant removal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-372

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Kajitvichyanukul, Environmental nanotechnology, first ed. Naresuan University Publishing House, Thailand, 2557.

Google Scholar

[2] K. W. Busch, M. A. Busch, Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction, Desalination, 109 (1997) 131-148.

DOI: 10.1016/s0011-9164(97)00059-3

Google Scholar

[3] Y. M. Hao, C. Man, Z. B. Hu, Effective removal of Cu(II) ions from aqueous solution by amino functionalized magnetic nanoparticles, J. Hazard. Mater. 184 (2010) 392-399.

DOI: 10.1016/j.jhazmat.2010.08.048

Google Scholar

[4] W. Wu, Q. He, C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Res. Lett. 3(11) (2008) 397-415.

DOI: 10.1007/s11671-008-9174-9

Google Scholar

[5] T. Puangmali, Magnetic Nanoparticles for Drug Targeting: A Magic Bullet for Cancer Therapy, KKU Sci. J. 41(3) (2013) 607-620.

Google Scholar

[6] G. Kandasamy, K. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, Int. J. Pharm. 496(2) (2015) 191-218.

DOI: 10.1016/j.ijpharm.2015.10.058

Google Scholar

[7] J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, Y. Zeng, M. Li, G. Zou, Preparation and magnetic properties of magnetite nanoparticles by sol–gel method, J. Magn. Magn. Mater. 309(2) (2007) 307-311.

DOI: 10.1016/j.jmmm.2006.07.037

Google Scholar

[8] N. J. Tang, W. Zhong, H. Y. Jiang, X. L. Wu, W. Liu, Y. W. Du, Nanostructured magnetite (Fe3O4) thin films prepared by sol–gel method, J. Magn. Magn. Mater. 282 (2004) 92-95.

DOI: 10.1016/j.jmmm.2004.04.022

Google Scholar

[9] R. Strobel, S. E. Pratsinis, Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis, Adv. Powder Technol. 20(2) (2009) 190-194.

DOI: 10.1016/j.apt.2008.08.002

Google Scholar

[10] T. Iwasaki, N. Sato, K. Kosaka, S. Watano, T. Yanagida, T. Kawai, Direct transformation from goethite to magnetite nanoparticles by mechanochemical reduction, J. Alloys Compd. 509(4) (2011) L34-L37.

DOI: 10.1016/j.jallcom.2010.10.029

Google Scholar

[11] E. H. Kim, H. S. Lee, B. K. Kwak, B. K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, J. Magn. Magn. Mater. 289 (2005) 328-330.

DOI: 10.1016/j.jmmm.2004.11.093

Google Scholar

[12] J. D. Obayemi, S. Dozie-Nwachukwu, Y. Danyuo, O. S. Odusanya, N. Anuku, K. Malatesta, W. O. Soboyejo, Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH), Mater. Sci. Eng. C 46 (2015).

DOI: 10.1016/j.msec.2014.10.081

Google Scholar

[13] P. A. Sundaram, R. Augustine, M. Kannan, Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil, Biotechnol. Bioprocess Eng. 17(4) (2012) 835-840.

DOI: 10.1007/s12257-011-0582-9

Google Scholar

[14] K. Pornchanok, I. Kwanruthai, L. Paveena, Microstructure and magnetic properties of cobalt ferrites nanoparticles, MRC. MSU 10 (2014) 9-19.

Google Scholar

[15] X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu, N. Guan, Size-Controlled Synthesis of Magnetite (Fe3O4) Nanoparticles Coated with Glucose and Gluconic Acid from a Single Fe(III) Precursor by a Sucrose Bifunctional Hydrothermal, J. Phys. Chem. C 113(36) (2009).

DOI: 10.1021/jp9038682

Google Scholar

[16] S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, Preparation of water-soluble magnetite nanocrystals through hydrothermal approach, J. Magn. Magn. Mater. 308(2) (2007) 210-213.

DOI: 10.1016/j.jmmm.2006.05.017

Google Scholar

[17] L. Ren, S. Huang, W. Fan, T. Liu, One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method, Appl. Surf. Sci. 258(3) (2011) 1132-1138.

DOI: 10.1016/j.apsusc.2011.09.049

Google Scholar

[18] X. Yang, W. Jiang, L. Liu, B. Chen, S. Wu, D. Sun, F. Li, One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles, J. Magn. Magn. Mater. 324(14) (2012) 2249-2257.

DOI: 10.1016/j.jmmm.2012.02.111

Google Scholar

[19] P. Santi, L. Sarawuth, T. Chunpen, A. Vittaya, S. Ekaphan, M. Santi, Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles, Appl. Phys. A 111(4) (2013) 1187-1193.

DOI: 10.1007/s00339-012-7340-5

Google Scholar

[20] D. H. Chen, S. H. Huang, Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles, Process. Biochem. 39(12) (2004) 2207-2211.

DOI: 10.1016/j.procbio.2003.11.014

Google Scholar

[21] F. He, D. Zhao, C. Paul, Field Assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones, Water Res. 44(7) (2010) 2360-2370.

DOI: 10.1016/j.watres.2009.12.041

Google Scholar

[22] L. T. M. Hoa, T. T. Dung, T. M. Danh, N. H. Duc, D. M. Chien, Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol, J. Phys. 187 (2009) 1-4.

DOI: 10.1088/1742-6596/187/1/012048

Google Scholar

[23] K. Patcharin, R. Metha, R. Boonjira, Stabilization of magnetite nanoparticle with chitosan and chitosan network, NU Sci. J. 7(2) (2011) 60-70.

Google Scholar

[24] K. Basavaiah, A. V. P. Rao, Synthesis of Polystyrensulfonic Stabilized Magnetite Nanoparticles, Chem. Sci. Trans. 1(2) (2012) 382-386.

Google Scholar

[25] D. Liu, P. Wang, G. Wei, W. Dong, F. Hui, Removal of algal blooms from freshwater by the coagulation–magnetic separation method, Environ. Sci. Pollut. Res. 20(1) (2013) 60-65.

DOI: 10.1007/s11356-012-1052-4

Google Scholar

[26] T. B. Wang, L. Liang, R. W. Wang, Y. Q. Jiang, K. F. Lin, J. M. Sun, Magnetic mesoporous carbon for efficient removal of organic pollutants, Adsorpt. 18 (2012) 439-444.

DOI: 10.1007/s10450-012-9430-2

Google Scholar

[27] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Mullllelr, Magnetic iron oxide nanoparticles: Synthesis, Stabillization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev. 108 (2008).

DOI: 10.1021/cr068445e

Google Scholar

[28] C. Y. Haw, F. Mohamed, C. H. Chia, S. Radiman, S. Zakaria, N. M. Huang, H. N. Lim, Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents, Ceram. Int. 36(4) (2010) 1417-1422.

DOI: 10.1016/j.ceramint.2010.02.005

Google Scholar

[29] C. Nucharee, B. Tripob, B. Darunee, Remanent Magnetization characteristics of Synthetic Magnetic Nanoparticles, KKU Res. J. (GS) 9 (2009) 48-56.

Google Scholar