The Design and Performance Study of Polymer Electrolyte Membrane Using 3-D Mesh

Article Preview

Abstract:

The production of hydrogen and oxygen using the water electrolysis technology is mostly influenced by the performance and efficiency of the components that are used in the production systems. In this study, the flow field’s channels of the bipolar plates of polymer electrolyte membrane electrolyzer were replaced by 3-D titanium mesh, and the polymer electrolyte membrane (PEM) electrolyzer cell that uses 3-D titanium mesh was designed. A numerical analysis was conducted to study the performance of the designed model. By comparing the results with the electrochemical performance of PEM electrolyzer cell with flow field channels on the plates, it was found that the cell with 3-D titanium mesh has greater performance and higher total power dissipation density. Therefore, the use of 3-D mesh can be used instead of machining the flow field channels on the bipolar plates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

393-397

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Han, Stuart M. Steen III, J. Mo, F. Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrogen Energy 40(22) (2015) 7006-7016.

DOI: 10.1016/j.ijhydene.2015.03.164

Google Scholar

[2] H. Gorgun, Dynamic modeling of a proton exchange membrane (PEM) electrolyzer, Int. J. Hydrogen Energy, 31(1) (2006) 29-38.

DOI: 10.1016/j.ijhydene.2005.04.001

Google Scholar

[3] S. Karimi, N. Fraser, B. Roberts, Frank R. Foulkes, A review of Metallic Bipolar plates for Proton Exchange Membrane Fuel Cells: Materals and fabrication Methods, Adv. Mater. Sci. Eng. 2012 (2012), Article ID 828070, 22pages.

DOI: 10.1155/2012/828070

Google Scholar

[4] N. Mohammadtabar, M. Bakhshi-Jooybari, S. J. Hossseinipour, A. H. Gorji, Feasibility study of a double-step hydroforming process for fabrication of fuel cell bipolar plates woth slotted interdigitated serpentine flow field, Int. J. Adv. Manuf. Technol. 85(1) (2016).

DOI: 10.1007/s00170-015-7960-y

Google Scholar

[5] L. Xianguo, S. Imran Sabir, Review of bipolar plates in PEM fuel cells: Flow-field designs, Int. J. Hydrogen Energy, 30(4) (2005) 359-371.

DOI: 10.1016/j.ijhydene.2004.09.019

Google Scholar

[6] A. Heinzel, F. Mahlendorf, C. Jansen, Bipolar plates, University of Duisburg-Essenm Duisburg, Germany 2009 Elsevier.

Google Scholar

[7] J. C. Hung, C. C. Lin, Fabrication of micro-flow channels for metallic bipolar plates by a high-pressure hydroforming apparatus, J. Power Sources, 206 (2012) 179-184.

DOI: 10.1016/j.jpowsour.2012.01.112

Google Scholar

[8] M. B. Osia, S. J. Hosseinipour, M. Bakhshi-Jooybari, A. Gorgi, Forming Metallic Mirco-feature bipolar plates for Fuel Cell Using Combined Hydroforming and Stamping Processes, Iranica J. Energy Environm. 4(2) (2013) 91-98.

DOI: 10.5829/idosi.ijee.2013.04.02.03

Google Scholar

[9] X. Z. Yuan, H. J. Wang, J. J. Zhang, David P. Wilkinson, Bipolar plates for Fuel Cells-Form Materials to processing, J. New Mater. Electrochem. Syst. 8(4) (2005) 257-267.

Google Scholar

[10] H. G. Kim, H. J. Shin, Y. J. Cha, S. H. Ko, H. W. Kim, L. K. Kwac, Stability Evaluation for Polymer Electrolyte Membrane Electrolyzer, Appl. Mech. Mater. 260-261 (2012) 443-448, ISSN: 1662-7482.

DOI: 10.4028/www.scientific.net/amm.260-261.443

Google Scholar

[11] T. Alexandre, Analysis of polymer electrolyte membrane (PEM) electrolyzer performance using 3-D mesh, Master's thesis, Dept. of Mechanical Eng, Jeonju University, Jeonju-si, South Korea (2016).

Google Scholar

[12] D. H. Jeon, S. Greenway, S. Shimpalee, J. W. Van Zee, The effect of serpentine flow field designs on PEM fuel cell performance, Int. J. Hydrogen Energy, 33(3) (2008) 1052-1066.

DOI: 10.1016/j.ijhydene.2007.11.015

Google Scholar

[13] COMSOL Inc., Mass Transport analysis of a High Temperature PEM Fuel Cell, https: /www. comsol. com/model/mass-transport-analysis-of-a-high-temperature-pem-fuel-cell-8550 (Accessed 26 MAY 2016).

DOI: 10.1016/b978-012374259-9.50006-9

Google Scholar

[14] COMSOL Multiphysics User's Guide. http: /people. ee. ethz. ch/~fieldcom/pps-comsol/documents/User%20Guide/COMSOLMultiphysicsUsersGuide. pdf.

Google Scholar

[15] T. Alexandre, H. J. Shin, S. H. Go, M. S. Lee, L. K. Kwac, H. G. Kim, Electrochemical performance analysis of a PEM water electrolysis with cathode feed mode based on flow passage shape of titanium plates, Int. J. Precis. Eng. Manuf. 17(8) (2016).

DOI: 10.1007/s12541-016-0130-9

Google Scholar