Biodiesel Production from Jatropha oaxacana Oil by Reactive Vacuum Distillation: Optimization by Response Surface Methodology

Article Preview

Abstract:

The application of Response Surface Methodology (RSM) and Central Composite Rotatable Design (CCRD) for modeling and optimization of the influence of three operating variables (mass of catalyst, MeOH/Oil molar ratio, and temperature) on performance of Reactive Vacuum Distillation (RVD) to increase biodiesel yield is discussed in this work. Changes in RVD performance during biodiesel production were evaluated by using RSM and CCRD. A mathematical equation to model biodiesel production by RVD was derived from computer simulation programming by applying a least squares method using MATLAB® v. R2016a. Predicted values were found to be in good agreement with experimental values (with R2 = 0.934). Optimal conditions for the production of ethyl esters were: Temperature: 31.2 °C, MeOH/Oil molar ratio: 5.65:1, and mass of catalyst: 0.1344 g.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Demirbas, Comparison of transesterification methods for production of biodiesel from vegetable oils and fats, Energy Convers Manage. 49 (2008) 125–130.

DOI: 10.1016/j.enconman.2007.05.002

Google Scholar

[2] J. Jiménez Ramírez, A. Campos Villanueva, M. Martínez Gordillo, Dos especies nuevas del género JATROPHA de la sección PLATYPHYLLAE (EUPHORBIACIAE). Anales Inst. de Biol., Univ. Nacional Autón. México, Ser. Bot. 65 (1994).

DOI: 10.21829/abm30.1995.728

Google Scholar

[3] Sanchez-Sanchez, A. Perez-Vazquez, J. Caplan, The Mexican Non-toxic Jatropha curcas L., Food Resoursce or Biofuel?, Ethnobot. Res. Appl. 11 (2013) 1–7.

Google Scholar

[4] A.C. Dimian, C.S. Bildea, F. Omota, A.A. Kiss, Innovative process for fatty acid esters by dual reactive distillation, Computers & Chem. Eng. 33 (2009) 743–750.

DOI: 10.1016/j.compchemeng.2008.09.020

Google Scholar

[5] B. Freedman, E.H. Pryde, T.L. Mounts, Biodiesel production from oils and fats with high free fatty acids, J. Am. Oil Chem. Soc. 61 (1984) 1638–1643.

DOI: 10.1007/bf02541649

Google Scholar

[6] A.K. Tiwari, A. Kumar, H. Raheman, Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenerg. 31 (2007) 569–75.

DOI: 10.1016/j.biombioe.2007.03.003

Google Scholar

[7] Ghadge SV, Rahema H. Process optimization for biodiesel production from Mahua (Madhuca indica) oil using response surface methodology. Bioresour Technol. 97 (2006) 379–84.

DOI: 10.1016/j.biortech.2005.03.014

Google Scholar

[8] A.K. Domingos, E.B. Saad, H.M. Wilhelm, L.P. Ramos, Optimization of the ethanolysis of Raphanus sativus (L. Var. ) crude oil applying the response surface methodology. Bioresour Technol. 99 (2008) 1837–45.

DOI: 10.1016/j.biortech.2007.03.063

Google Scholar

[9] A. Bouaid, L. Bajo, M. Martinez, J. Aracil, Optimization of biodiesel production from jojoba oil. Trans IChemE. 85 (2007) 378–82.

DOI: 10.1205/psep07004

Google Scholar

[10] X. Chen, W. Du, D. Liu, Response surface optimization of biocatalytic biodiesel production with acid oil. Biochem Eng. J. 40 (2008) 423–9.

DOI: 10.1016/j.bej.2008.01.012

Google Scholar

[11] J.S. Kwak, Application of Taguchi and response surface methodologies for geometric error in surface grinding process, Int. J. Mach. Tool Manuf. 45 (2005) 327–34.

DOI: 10.1016/j.ijmachtools.2004.08.007

Google Scholar

[12] N. Aslan, Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel. 86 (2007) 769-776.

DOI: 10.1016/j.fuel.2006.10.020

Google Scholar

[13] J.S. Box GEP, J.S. Hunter, Multi-factor experimental design for exploring response surfaces, Ann. Math. Stat. 28 (1957) 195–241.

DOI: 10.1214/aoms/1177707047

Google Scholar

[14] D.P. Obeng, S. Morrell, T.J.N. Napier, Application of central composite rotatable design to modeling the effect of some operating variables on the performance of the three-product cyclone, Int. J. Miner Process. 769 (2005) 181–192.

DOI: 10.1016/j.minpro.2005.01.002

Google Scholar

[15] Y.S. Hung, Y.H. Chen, N.C. Shang, C.H. Chang, T.L. Lu, C.Y. Chang, J.L. Shie, Comparison of biodiesels produced from waste and virgin vegetable oils, Sustain. Environ. Res. 20 (2010) 417–422.

Google Scholar

[16] U. Rashid, F. Anwar, M. Ashraf, M. Saleem, S. Yusup, Application of response furface methodology for optimizing transesterification of Moringa oleifera oil, Energy Convers Manage. 52 (2011) 3034–3042.

DOI: 10.1016/j.enconman.2011.04.018

Google Scholar