Characterization of Pulse Anodized Titanium Dioxide Nanotubes

Article Preview

Abstract:

TiO2 nanotubes with a highly ordered structure were grown by a self-organized electrochemical anodization in the viscous organic electrolyte. The alteration pulse anodization waveforms were applied. The applied potentials were between positive of 20 V 10 min and a reverse voltage of 0 V or -5 V 20 sec. The morphologies of samples were examined using a field emission scanning electron microscope and focused ion beam field emission scanning electron microscopes (FIB-FESEM). The crystalline structures of the TiO2 nanotubes were confirmed by X-ray diffraction. The UV–Vis diffuse reflection absorption were recorded by a UV–vis spectrometer. All TiO2 nanotube samples prepared by pulse anodization technique were anatase phase and responded to UV region. The best-defined TiO2 nanotube morphology was obtained from the anodization condition: 20 V 10 min/-5 V 20 sec for 1 h. The thickness of the oxide layer increased with the increasing anodization time. All eight TiO2 nanotube samples responded to the light in the wavelength ranging from 190-360 nm which was UV region indicated the good photocatalytic property of these materials. Properties of anodized titanium dioxide nanotube from this work can be the useful indicators for the responsiveness of ultraviolet light which enhances the good property in photocatalytic process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-378

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. M. Wang, S. W. Liu, M. K. Lu, S. F. Wang, F. Gu, X. Z. Gai, X. P. Cui, J. Pan, Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals, J. Molecul. Catal. A: Chem. 215(1-2) (2004) 137-142.

DOI: 10.1016/j.molcata.2004.01.007

Google Scholar

[2] G. K. Kiema, M. J. Colgan, M. J. Brett, Dye Sensitized solar cells incorporating obliquely deposited titanium oxide layers, Sol. Energy Mater. Sol. cell, 85(3) (2005) 321-331.

DOI: 10.1016/j.solmat.2004.05.001

Google Scholar

[3] K. S. Raji, T. Gandhi, M. Misra, Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotube, Electrochem. Commun. 9(5) (2007) 1069-1076.

DOI: 10.1016/j.elecom.2006.12.024

Google Scholar

[4] C. Wilaiwan, W. Apichon, C. R. Chenthamarakshan, K. Puangrat, N. R. de Tacconi, K. Rajeshwar, Titania nanotubes from pulse anodization of titanium foils, Electrochem. Commun. 9(8) (2007) 2145-2149.

DOI: 10.1016/j.elecom.2007.06.006

Google Scholar

[5] O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33-177.

Google Scholar

[6] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1(1) (2000) 1-21.

Google Scholar

[7] E. Ritter, Dielectric film materials for optical applications, Phys. thin film 8 (1975) 1-49.

Google Scholar

[8] H. K. Pulker, Coatings on Glass Substrates, Thin Solid Film 77 (1981) 203-212.

DOI: 10.1016/0040-6090(81)90376-x

Google Scholar

[9] L. E. Fraga, M. A. Anderson, M. L. P. M. A. Beatriz, F. M. M. Paschoal, L. P. Romão, M. V. B. Zanoni, Evaluation of the photoelectrocatalytic method for oxidizing chloride and simultaneous removal of microcystin toxins in surface water, Electrochim. Acta 54(7) (2009).

DOI: 10.1016/j.electacta.2008.08.060

Google Scholar

[10] P. Y. Simons, F. Dachille, The structure of TiO2II, a high-pressure phase of TiO2, Acta Crystallor 23 (1967) 334-336.

Google Scholar

[11] Y. Takahasi, N. Kijima, J. Akimoto, Synthesis, Structural Change upon Heating, and Electronic Structure of Ramsdellite-Type TiO2., Chem. Mater. 18(3) (2006) 748-752.

DOI: 10.1021/cm0521370

Google Scholar

[12] Y. Ao, Y. Gao, P. Wang, C. Wang, J. Hou, J. Quan, Solvent-controlled preparation and photocatalytic properties of nanostructured TiO2 thin films with different morphologies, Mater. Res. Bull. 49 (2014) 223-228.

DOI: 10.1016/j.materresbull.2013.09.002

Google Scholar

[13] N. l. Ermokhina, V. A. Nevinskiy, P. A. Manorik, V. G. llyin, N. N. Shcherbatyuk, D. O. Klymchyuk, A. M. Puziy, Synthesis of large-pore mesoporous nanocrystallin TiO2 microspheres, Mater. Lett. 75 (2012) 68-70.

DOI: 10.1016/j.matlet.2012.01.133

Google Scholar

[14] M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, M. Anpo, Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation, J. Phys. Chem. B 110(50) (2006).

DOI: 10.1021/jp064893e

Google Scholar

[15] T. Oishi, T. Matsubara, A. Katagiri, Formation of porous TiO2 by anodic oxidation and chemical etching of titanium, Electrochem. 68 (2000) 106-111.

DOI: 10.5796/electrochemistry.68.106

Google Scholar

[16] P. Roy, S. Berger, P. Schmuki, TiO2 Nanotube: Synthesis and Application, Anewandte Chemie 50(13) (2011) 2904-2939.

DOI: 10.1002/anie.201001374

Google Scholar

[17] S. H. Wang, X. W. Zhou, X. R. Xiao, Y. Y. Fang, Y. Lin, An Increase in conversion efficiency of Dry-Sensitized solar cells using bamboo-type TiO2 Nanotube Arrays, Electrochimica Acta, 116 (2014) 26-30.

DOI: 10.1016/j.electacta.2013.11.011

Google Scholar

[18] D. Kim, A. Ghicov, S. P. Albu, P. Schmuki, Bamboo-Type TiO2 Nanotubes: Improved Conversion Efficiency in Dye-Sensitized Solar Cell, Dpt. Mater. Sci. 130(49) (2008) 16454-16455.

DOI: 10.1021/ja805201v

Google Scholar

[19] Y. L. Xie, Z. X. Li, H. Xu, K. F. Xie, Z. G. Xu, H. L. Zhang, Fabrication of TiO2 nanotube with extended periodical morphology by alternating-current anodization, Electrochem. Commun. 17 (2012) 34-37.

DOI: 10.1016/j.elecom.2012.01.021

Google Scholar

[20] Y. Sun, G. Wang, K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. Int. J. Hydr. Energ. 36 (2011) 15502-15508.

DOI: 10.1016/j.ijhydene.2011.08.112

Google Scholar

[21] A. G. Kontos, A. Katsanaki, V. Likodimos, T. Maggos, D. Kim, C. Vasilakos, D. D. Dionysiou, P. Sckmuki, P. Falaras, Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania film. Chem. Eng. J. 179 (2012).

DOI: 10.1016/j.cej.2011.10.072

Google Scholar

[22] Z. Y. Liu, X. T. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, Phys. Chem. C 112(1) (2008) 253-259.

DOI: 10.1021/jp0772732

Google Scholar

[23] Y. B. Xie, L. M. Zhou, J. Lu, Photoelectrochemical behavior of titania nanotube array grown on nanocrystallin titanium, Mater. Sci. 44(11) (2009) 2907-2915.

DOI: 10.1007/s10853-009-3384-0

Google Scholar

[24] L. Li, Z. Zhou, J. Lei, J. He, S. Wu, F. Pan, Facile fabrication of a dual hierarchical TiO2 nanostructure, Master. Lett. 68 (2012) 290-292.

DOI: 10.1016/j.matlet.2011.10.104

Google Scholar

[25] Y. Zhang, D. J. Wang, S. Pang, Y. H. Lin, T. F. Jiang, T. F. Xie, A study on photogenerated charges property in highly ordered TiO2 nanotube array, Appl. Surf. Sci. 256(23) (2010) 7217-7221.

DOI: 10.1016/j.apsusc.2010.05.054

Google Scholar

[26] H. P. Klun, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Material, John Wiley & Sons Incorporated, New York (1974) 791-859.

Google Scholar