Structures, Dielectric Properties and Luminescence Properties of Nb Doped Li2TiO3 Solid Solution Ceramics

Article Preview

Abstract:

In this article, the low-firing Li2+xNb3xTi1-4xO3(x = 0.01, 0.02, 0.04, 0.06) ceramics with monoclinic structure have been obtained by the traditional solid solution method and their microwave dielectric properties were investigated in detail. The ceramics were finely densified at lower temperatures around 1100 °C and demonstrated favorable dielectric performances including relatively low permittivities (εr) ranging from 19 to 24, high Q×f values up to 60,000 GHz (fres = 7.89GHz) and small temperature coefficients of the resonate frequency (for x = 0.02, τf = 10.4 ppm/ °C; x = 0.06, τf = -11.5 ppm/ °C). Furthermore, the ceramics could be densified at around 900°C with adding low-amount of B2O3. Especially, the 1wt.% B2O3-doped Li2+xNb3xTi1-4xO3 (x = 0.06) ceramics was sintered well-densified at 900°C and presented good microwave dielectric properties with εr ∼ 22.2, Q×f ∼ 44,000 GHz. In addition, these ceramics have luminescence properties, which indicated that the ceramics would be applied in LTCC and/or luminescence applications as new luminescence LTCC (low temperature co-fired ceramics) materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sobocinski, M. Leinonen, J. Juuti, N. Mantyniemi, H. Jantunen, A Co-fired LTCC-PZT Monomorph Bridge Type Acceleration Sensor, Sensor Actuators A-Phys., 216.

DOI: 10.1016/j.sna.2014.06.017

Google Scholar

[3] (2014) 370-375.

Google Scholar

[2] M. J. Czok, R. J. Tadaszak, L. J. Golonka, LTCC Based Chip for Monitoring in Biological Applications, Procedia Eng., 47 (2012) 1145-1148.

DOI: 10.1016/j.proeng.2012.09.354

Google Scholar

[3] K. Malecha, T. Maeder, C. Jacq, Peter Ryser, Structuration of the low Temperature Co-fired Ceramics (LTCC) Using Novel Sacrificial Graphite Paste With PVA-propylene Glycol-glycerol-water Vehicle, Microelectron. Reliab., 51.

DOI: 10.1016/j.microrel.2010.11.009

Google Scholar

[4] (2011) 805-811.

Google Scholar

[4] Y. Sugimoto, N. Mori, Y. Moriya and T. Takada, Dielectric Properties of new LTCC Material Applied to High Frequencies, J. Ceram. Soc. Jpn., 122 (2014) 492-495.

DOI: 10.2109/jcersj2.122.492

Google Scholar

[5] C. C. Cheng, T. E. Hsieh, I. N. Lin, The Effect of Composition on Ba-Nd-Sm-Ti-O Miacrowave Dielectric Materials for LTCC Application, Mater. Chem. Phy., 79 [2-3] (2003) 119-123.

DOI: 10.1016/s0254-0584(02)00251-1

Google Scholar

[6] P. F. Ning, L. X. Li, P. Zhang, W. S. Xia, Raman Scattering, Electronic Structure and Microwave Dielectric Properties of Ba([Mg1−xZnx]1/3Ta2/3)O3 Ceramics, Ceram. Int., 38.

DOI: 10.1016/j.ceramint.2011.09.018

Google Scholar

[2] (2012) 1391-1398.

Google Scholar

[7] W. Wu, Y. Zhang, Q. Zhang, X. Wang, X. Song, Characterization of PLZST-PMW Dielectric Ceramics, Mater. Res. Bull., 60 (2014) 183-187.

DOI: 10.1016/j.materresbull.2014.08.031

Google Scholar

[8] D. Zou, Q. Zhang, H. Yang, S. Li, Low Temperature Sintering and Microwave Dielectric Properties of Ba2Ti3Nb4O18 Ceramics for LTCC Applications, J. Eur. Ceram. Soc., 28.

DOI: 10.1016/j.jeurceramsoc.2008.04.021

Google Scholar

[14] (2008) 2777-2782.

Google Scholar

[9] T. Zhang, R. Zuo, Effect of Li2O-V2O5 Addition on the Sintering Behavior and Microwave Dielectric Properties of Li3(Mg1−xZnx)2NbO6 Ceramics, Ceram. Int., 40.

DOI: 10.1016/j.ceramint.2014.07.090

Google Scholar

[10] (2014) 15677-15684.

Google Scholar

[10] M. Y. Chen, J. Juuti, C. S. Hsi, C. T. Chia, H. Jantunen, Dielectric BaTiO3-BBSZ Glass Ceramic Composition with Ultra-low Sintering Temperature, J. Eur. Ceram. Soc., 35.

DOI: 10.1016/j.jeurceramsoc.2014.08.015

Google Scholar

[1] (2015) 139-144.

Google Scholar

[11] Y X. Jin, L X. Li, H L. Dong, S. H. Yu, D. Xu, Structures, phase transformations, and dielectric properties of (1-x)Bi2Zn2/3Nb4/3O7-xBi1. 5NiNb1. 5O7, pyrochlore ceramics prepared by aqueous sol-gel method, J. Alloys Compd., 622 (2015) 200-205.

DOI: 10.1016/j.jallcom.2014.10.021

Google Scholar

[12] D. Thomas, M. T. Sebastian, Effect of Zn2+ Substitution on the Microwave Dielectric Properties of LiMgPO4 and the Development of a new Temperature Stable Glass Free LTCC, J. Eur. Ceram. Soc., 32.

DOI: 10.1016/j.jeurceramsoc.2012.01.031

Google Scholar

[10] (2012) 2359-2364.

Google Scholar

[13] J. K. Sim, K. Ashok, Y. H. Ra, H. C. Im, B. J. Baek, C. R. Lee, Characteristic Enhancement of White LED Lamp Using Low Temperature Co-fired Ceramic-chip on Board Package, Curr. Appl. Phys., 12.

DOI: 10.1016/j.cap.2011.08.008

Google Scholar

[2] (2011) 494-498.

Google Scholar

[14] Z. Liu, Y. Wang, W. Wu, Y. Li, Li-Nb-Ti-O Microwave Dielectric Ceramics, J. Asian Ceram. Soc., 1.

Google Scholar

[1] (2013) 2-8.

Google Scholar

[15] Q. Zeng, W. Li, J. L. Shi, J. K. Guo, M. W. Zuo, W. J. Wu, A New Microwave Dielectric Ceramic for LTCC Applications, J. Am. Ceram. Soc., 89.

Google Scholar

[5] (2006) 1733-1735.

Google Scholar

[16] M. Mohapatra, Y. P. Naik, V. Natarajan, T. K. Seshagiri, Z. Singh, S. V. Godbole, Rare Earth Doped Lithium Titanate (Li2TiO3) for Potential Phosphor Applications, J. Lumin., 130.

DOI: 10.1016/j.jlumin.2010.08.001

Google Scholar

[12] (2010) 2402-2406.

Google Scholar

[17] B. W. Hakki and P. D. Coleman, A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range, IRE Trans. MTT., 8.

Google Scholar

[4] (1960) 402-410.

Google Scholar

[18] W. E. Courtney, Analysis and Evaluation Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators, IEEE Trans. MTT., 18.

Google Scholar

[8] (1970) 476-485.

Google Scholar

[19] Powder Diffraction File (PDF) No. 33-0831.

Google Scholar

[20] R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst., A32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[21] Aragόn-Piña, M. E. Villafuerte-Castrejόn, R. Valenzuela, A. R. West, Solid Solutions with Rock Salt Related Structures on the Join Li2TiO3-Li3NbO4, J. Mater. Sci. Lett., 3.

DOI: 10.1007/bf00719580

Google Scholar

[10] (1984) 893-896.

Google Scholar

[22] R. D. Shannon, Dielectric Polarizabilities of Ions in Oxides and Fluorides, J. Appl. Phys., 73.

Google Scholar

[1] (1993) 348-366.

Google Scholar

[23] Y. J. Hsiao, C. W. Liu, B. T. Dai, Y. H. Chang, Sol-gel Synthesis and the Luminescent Properties of CaNb2O6 Phosphor Powders, J. Alloys Compd., 475 [1-2] (2009) 698-701.

DOI: 10.1016/j.jallcom.2008.07.142

Google Scholar