[1]
M. Sobocinski, M. Leinonen, J. Juuti, N. Mantyniemi, H. Jantunen, A Co-fired LTCC-PZT Monomorph Bridge Type Acceleration Sensor, Sensor Actuators A-Phys., 216.
DOI: 10.1016/j.sna.2014.06.017
Google Scholar
[3]
(2014) 370-375.
Google Scholar
[2]
M. J. Czok, R. J. Tadaszak, L. J. Golonka, LTCC Based Chip for Monitoring in Biological Applications, Procedia Eng., 47 (2012) 1145-1148.
DOI: 10.1016/j.proeng.2012.09.354
Google Scholar
[3]
K. Malecha, T. Maeder, C. Jacq, Peter Ryser, Structuration of the low Temperature Co-fired Ceramics (LTCC) Using Novel Sacrificial Graphite Paste With PVA-propylene Glycol-glycerol-water Vehicle, Microelectron. Reliab., 51.
DOI: 10.1016/j.microrel.2010.11.009
Google Scholar
[4]
(2011) 805-811.
Google Scholar
[4]
Y. Sugimoto, N. Mori, Y. Moriya and T. Takada, Dielectric Properties of new LTCC Material Applied to High Frequencies, J. Ceram. Soc. Jpn., 122 (2014) 492-495.
DOI: 10.2109/jcersj2.122.492
Google Scholar
[5]
C. C. Cheng, T. E. Hsieh, I. N. Lin, The Effect of Composition on Ba-Nd-Sm-Ti-O Miacrowave Dielectric Materials for LTCC Application, Mater. Chem. Phy., 79 [2-3] (2003) 119-123.
DOI: 10.1016/s0254-0584(02)00251-1
Google Scholar
[6]
P. F. Ning, L. X. Li, P. Zhang, W. S. Xia, Raman Scattering, Electronic Structure and Microwave Dielectric Properties of Ba([Mg1−xZnx]1/3Ta2/3)O3 Ceramics, Ceram. Int., 38.
DOI: 10.1016/j.ceramint.2011.09.018
Google Scholar
[2]
(2012) 1391-1398.
Google Scholar
[7]
W. Wu, Y. Zhang, Q. Zhang, X. Wang, X. Song, Characterization of PLZST-PMW Dielectric Ceramics, Mater. Res. Bull., 60 (2014) 183-187.
DOI: 10.1016/j.materresbull.2014.08.031
Google Scholar
[8]
D. Zou, Q. Zhang, H. Yang, S. Li, Low Temperature Sintering and Microwave Dielectric Properties of Ba2Ti3Nb4O18 Ceramics for LTCC Applications, J. Eur. Ceram. Soc., 28.
DOI: 10.1016/j.jeurceramsoc.2008.04.021
Google Scholar
[14]
(2008) 2777-2782.
Google Scholar
[9]
T. Zhang, R. Zuo, Effect of Li2O-V2O5 Addition on the Sintering Behavior and Microwave Dielectric Properties of Li3(Mg1−xZnx)2NbO6 Ceramics, Ceram. Int., 40.
DOI: 10.1016/j.ceramint.2014.07.090
Google Scholar
[10]
(2014) 15677-15684.
Google Scholar
[10]
M. Y. Chen, J. Juuti, C. S. Hsi, C. T. Chia, H. Jantunen, Dielectric BaTiO3-BBSZ Glass Ceramic Composition with Ultra-low Sintering Temperature, J. Eur. Ceram. Soc., 35.
DOI: 10.1016/j.jeurceramsoc.2014.08.015
Google Scholar
[1]
(2015) 139-144.
Google Scholar
[11]
Y X. Jin, L X. Li, H L. Dong, S. H. Yu, D. Xu, Structures, phase transformations, and dielectric properties of (1-x)Bi2Zn2/3Nb4/3O7-xBi1. 5NiNb1. 5O7, pyrochlore ceramics prepared by aqueous sol-gel method, J. Alloys Compd., 622 (2015) 200-205.
DOI: 10.1016/j.jallcom.2014.10.021
Google Scholar
[12]
D. Thomas, M. T. Sebastian, Effect of Zn2+ Substitution on the Microwave Dielectric Properties of LiMgPO4 and the Development of a new Temperature Stable Glass Free LTCC, J. Eur. Ceram. Soc., 32.
DOI: 10.1016/j.jeurceramsoc.2012.01.031
Google Scholar
[10]
(2012) 2359-2364.
Google Scholar
[13]
J. K. Sim, K. Ashok, Y. H. Ra, H. C. Im, B. J. Baek, C. R. Lee, Characteristic Enhancement of White LED Lamp Using Low Temperature Co-fired Ceramic-chip on Board Package, Curr. Appl. Phys., 12.
DOI: 10.1016/j.cap.2011.08.008
Google Scholar
[2]
(2011) 494-498.
Google Scholar
[14]
Z. Liu, Y. Wang, W. Wu, Y. Li, Li-Nb-Ti-O Microwave Dielectric Ceramics, J. Asian Ceram. Soc., 1.
Google Scholar
[1]
(2013) 2-8.
Google Scholar
[15]
Q. Zeng, W. Li, J. L. Shi, J. K. Guo, M. W. Zuo, W. J. Wu, A New Microwave Dielectric Ceramic for LTCC Applications, J. Am. Ceram. Soc., 89.
Google Scholar
[5]
(2006) 1733-1735.
Google Scholar
[16]
M. Mohapatra, Y. P. Naik, V. Natarajan, T. K. Seshagiri, Z. Singh, S. V. Godbole, Rare Earth Doped Lithium Titanate (Li2TiO3) for Potential Phosphor Applications, J. Lumin., 130.
DOI: 10.1016/j.jlumin.2010.08.001
Google Scholar
[12]
(2010) 2402-2406.
Google Scholar
[17]
B. W. Hakki and P. D. Coleman, A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range, IRE Trans. MTT., 8.
Google Scholar
[4]
(1960) 402-410.
Google Scholar
[18]
W. E. Courtney, Analysis and Evaluation Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators, IEEE Trans. MTT., 18.
Google Scholar
[8]
(1970) 476-485.
Google Scholar
[19]
Powder Diffraction File (PDF) No. 33-0831.
Google Scholar
[20]
R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst., A32 (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[21]
Aragόn-Piña, M. E. Villafuerte-Castrejόn, R. Valenzuela, A. R. West, Solid Solutions with Rock Salt Related Structures on the Join Li2TiO3-Li3NbO4, J. Mater. Sci. Lett., 3.
DOI: 10.1007/bf00719580
Google Scholar
[10]
(1984) 893-896.
Google Scholar
[22]
R. D. Shannon, Dielectric Polarizabilities of Ions in Oxides and Fluorides, J. Appl. Phys., 73.
Google Scholar
[1]
(1993) 348-366.
Google Scholar
[23]
Y. J. Hsiao, C. W. Liu, B. T. Dai, Y. H. Chang, Sol-gel Synthesis and the Luminescent Properties of CaNb2O6 Phosphor Powders, J. Alloys Compd., 475 [1-2] (2009) 698-701.
DOI: 10.1016/j.jallcom.2008.07.142
Google Scholar