[1]
B.C. Sales, Thermoelectric materials-Smaller is cooler, Science 295 (2002) 1248-1249.
Google Scholar
[2]
F.J. DiSalvo, Thermoelectric cooling and power generation, Science 285 (1999) 703-706.
DOI: 10.1126/science.285.5428.703
Google Scholar
[3]
X.F. Tang, L.D. Chen, T. Goto, T. Hirai, and Y. R. Zhang, Thermoelectric Properties of p-Type BayFexCo4-xSb12, Acta Phys. Sin. 50 (2001) 1560-1566. (in Chinese).
Google Scholar
[4]
L.D. Hicks, M. S. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B. 47 (1993) 12727.
DOI: 10.1103/physrevb.47.12727
Google Scholar
[5]
Z.H. Zheng, P. Fan, P.J. Liu, J.T. Luo, X.M. Cai, G.X. Liang, D.P. Zhang, F. Ye, Y.Z. Li, and Q.Y. Lin, Enhanced thermoelectric properties of mixed zinc antimonide thin films via phase optimization, Appl. Surf. Sci. 292 (2014) 823-827.
DOI: 10.1016/j.apsusc.2013.12.056
Google Scholar
[6]
L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, Thermoelectric properties of Zn4Sb3 thin films prepared by magnetron sputtering, Thin Solid Films 443 (2003) 84-90.
DOI: 10.1016/s0040-6090(03)00855-1
Google Scholar
[7]
G.J. Snyder, M. Christensen and E. Nishibori, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3 (2004) 458-463.
DOI: 10.1038/nmat1154
Google Scholar
[8]
T. Caillat, J.P. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids, 58 (1997) 1119-1125.
DOI: 10.1016/s0022-3697(96)00228-4
Google Scholar
[9]
Z. Zeng, P. Yang, Z. Hu, Temperature and size effects on electrical properties and thermoelectric power of Bismuth Telluride thin films deposited by co-sputtering, Appl. Surf. Sci. 268 (2013) 472-476.
DOI: 10.1016/j.apsusc.2012.12.134
Google Scholar
[10]
L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3, J. of Alloys Comps. 358 (2003) 252-256.
DOI: 10.1016/s0925-8388(03)00074-4
Google Scholar
[11]
N.L. Kostur, V. I. Psarev, Electrical properties of doped single crystals of ZnSb, Sov. Phys. J. 10 (1967) 21-23.
DOI: 10.1007/bf00819977
Google Scholar
[12]
H.J. Gau, J. T. Yu, C. C. Wu, Y. K. Kuo, C. H. Ho, Thermoelectric properties of Zn–Sb alloys doped with In, J. Alloys Compd. 480 (2009) 73-75.
DOI: 10.1016/j.jallcom.2008.09.202
Google Scholar
[13]
L. Bjerg, G. K. Madsen, B. B. Iversen, Enhanced thermoelectric properties in zinc antimonides, Chem. Mater. 23 (2011) 3907-3914.
DOI: 10.1021/cm201271d
Google Scholar
[14]
S. Saadat, J. Zhu, M. M. Shahjamali, S. Maleksaeedi, Y. Y. Tay, B. Y. Tay, H. H. Hng, J. Ma and Q. Yan, Template free electrochemical deposition of ZnSb nanotubes for Li ion battery anodes, Chem. Commun. 47 (2011) 9849-9851.
DOI: 10.1039/c1cc13900b
Google Scholar
[15]
L.P. Liu, P.X. Zhang, Y.L. Li, X.Z. Ren and L.B. Deng, Three-dimensional nanoarchitecture SnSbZn–C composite nanofibers as anode materials for lithium-ion batteries, RSC Adv. 6 (2016) 52746-52753.
DOI: 10.1039/c6ra09661a
Google Scholar
[16]
F. Rouessac, R. -M. Ayral, Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds, J. of Alloys Comps. 530 (2012) 56-62.
DOI: 10.1016/j.jallcom.2012.03.089
Google Scholar
[17]
A. Denoix, A. Solaiappan, R. -M. Ayral. Chemical route for formation of intermetallic Zn4Sb3 phase, J. Solid State Chem. 183 (2010) 1090-1094.
DOI: 10.1016/j.jssc.2010.03.024
Google Scholar