Studies on the Structure and Properties of ZnSb Thin Films Deposited under Various Sputtering Conditions

Article Preview

Abstract:

In this paper ZnSb thin films were prepared by radio frequency magnetron sputteringfrom a stoichiometric Zn4Sb3 target followed by thermal annealing. The influence of sputteringconditions on microstructure, surface morphology, crystallinity and electrical transport propertieswere investigated. For the range of sputtering power of 50 W to 125 W and working pressure of 0.7Pa, it was found that the content of compound ZnSb phase in the films as well as film crystallinitycould be enhanced greatly by increasing the sputtering power, and this effect may be reinforced bydecreasing the working pressure to 0.2 Pa. At 0.7 Pa, A maximum value of 2.99 μW/cmK2 of powerfactor measured at room temperature was obtained at 100 W. The sample prepared at the samepower and lower pressure of 0.2 Pa has a room temperature power factor of 5.46 μW/cmK2 which isalmost doubled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-147

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. Sales, Thermoelectric materials-Smaller is cooler, Science 295 (2002) 1248-1249.

Google Scholar

[2] F.J. DiSalvo, Thermoelectric cooling and power generation, Science 285 (1999) 703-706.

DOI: 10.1126/science.285.5428.703

Google Scholar

[3] X.F. Tang, L.D. Chen, T. Goto, T. Hirai, and Y. R. Zhang, Thermoelectric Properties of p-Type BayFexCo4-xSb12, Acta Phys. Sin. 50 (2001) 1560-1566. (in Chinese).

Google Scholar

[4] L.D. Hicks, M. S. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B. 47 (1993) 12727.

DOI: 10.1103/physrevb.47.12727

Google Scholar

[5] Z.H. Zheng, P. Fan, P.J. Liu, J.T. Luo, X.M. Cai, G.X. Liang, D.P. Zhang, F. Ye, Y.Z. Li, and Q.Y. Lin, Enhanced thermoelectric properties of mixed zinc antimonide thin films via phase optimization, Appl. Surf. Sci. 292 (2014) 823-827.

DOI: 10.1016/j.apsusc.2013.12.056

Google Scholar

[6] L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, Thermoelectric properties of Zn4Sb3 thin films prepared by magnetron sputtering, Thin Solid Films 443 (2003) 84-90.

DOI: 10.1016/s0040-6090(03)00855-1

Google Scholar

[7] G.J. Snyder, M. Christensen and E. Nishibori, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3 (2004) 458-463.

DOI: 10.1038/nmat1154

Google Scholar

[8] T. Caillat, J.P. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids, 58 (1997) 1119-1125.

DOI: 10.1016/s0022-3697(96)00228-4

Google Scholar

[9] Z. Zeng, P. Yang, Z. Hu, Temperature and size effects on electrical properties and thermoelectric power of Bismuth Telluride thin films deposited by co-sputtering, Appl. Surf. Sci. 268 (2013) 472-476.

DOI: 10.1016/j.apsusc.2012.12.134

Google Scholar

[10] L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3, J. of Alloys Comps. 358 (2003) 252-256.

DOI: 10.1016/s0925-8388(03)00074-4

Google Scholar

[11] N.L. Kostur, V. I. Psarev, Electrical properties of doped single crystals of ZnSb, Sov. Phys. J. 10 (1967) 21-23.

DOI: 10.1007/bf00819977

Google Scholar

[12] H.J. Gau, J. T. Yu, C. C. Wu, Y. K. Kuo, C. H. Ho, Thermoelectric properties of Zn–Sb alloys doped with In, J. Alloys Compd. 480 (2009) 73-75.

DOI: 10.1016/j.jallcom.2008.09.202

Google Scholar

[13] L. Bjerg, G. K. Madsen, B. B. Iversen, Enhanced thermoelectric properties in zinc antimonides, Chem. Mater. 23 (2011) 3907-3914.

DOI: 10.1021/cm201271d

Google Scholar

[14] S. Saadat, J. Zhu, M. M. Shahjamali, S. Maleksaeedi, Y. Y. Tay, B. Y. Tay, H. H. Hng, J. Ma and Q. Yan, Template free electrochemical deposition of ZnSb nanotubes for Li ion battery anodes, Chem. Commun. 47 (2011) 9849-9851.

DOI: 10.1039/c1cc13900b

Google Scholar

[15] L.P. Liu, P.X. Zhang, Y.L. Li, X.Z. Ren and L.B. Deng, Three-dimensional nanoarchitecture SnSbZn–C composite nanofibers as anode materials for lithium-ion batteries, RSC Adv. 6 (2016) 52746-52753.

DOI: 10.1039/c6ra09661a

Google Scholar

[16] F. Rouessac, R. -M. Ayral, Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds, J. of Alloys Comps. 530 (2012) 56-62.

DOI: 10.1016/j.jallcom.2012.03.089

Google Scholar

[17] A. Denoix, A. Solaiappan, R. -M. Ayral. Chemical route for formation of intermetallic Zn4Sb3 phase, J. Solid State Chem. 183 (2010) 1090-1094.

DOI: 10.1016/j.jssc.2010.03.024

Google Scholar