Fabrication of Macroporous Silicon in Organic Electrolytes and their Luminescence

Article Preview

Abstract:

The quasi-regular arrangements porous silicon was fabricated by by electrochemical process using organic solutions with front-side illumination, and SEM showed that the morphology of porous silicon was dependent sensitively on the current density, organic electrolytes and their concentration. The results indicate that N-dimethylformamide (DMF) is the best organic solution and quasi-regular arranged pores can be well organized in 20%HF/DMF solution. The luminescence shows fresh porous silicon can emit the red luminescence at room temperature and quench after nanoporous layer destroyed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.H. Huang, Y. Pei, D. Zhang, Y. Li, K.A. Kilian, Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation, Nanoscale. 8 (2016) 10891-10895.

DOI: 10.1039/c5nr08327c

Google Scholar

[2] A. Lukianov, K. Murakami, C. Takazawa, M. Ihara, Formation of the seed layers for layer-transfer process silicon solar cells by zone-heating recrystallization of porous silicon structures, Appl. Phys. Lett. 108 (2016) 213904.

DOI: 10.1063/1.4951671

Google Scholar

[3] Y. Zhao, G. Gaur, S.T. Retterer, P.E. Laibinis, S.M. Weiss, Flow-through porous silicon membranes for real-time label-free biosensing, Anal. Chem. 88 (2016) 10940-10948.

DOI: 10.1021/acs.analchem.6b02521

Google Scholar

[4] W.Y. Tong, M.J. Sweetman, E.R. Marzouk, C. Fraser, T. Kuchel, N.H. Voelcker, Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon, Biomaterials, 74 (2016) 217-230.

DOI: 10.1016/j.biomaterials.2015.09.045

Google Scholar

[5] V. Lehmann, H. Föll, Formation mechanism and properties of electrochemically etched trenches in n-type Silicon, J. Electrochem. Soc. 137 (1990) 653-659.

DOI: 10.1149/1.2086525

Google Scholar

[6] M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger, W. Jäger, H. Föll, Crystal orientation dependence and anisotropic properties of macropore formation of p-and n-type silicon, J. Electrochem. Soc. 148 (2001) E267-E275.

DOI: 10.1149/1.1369378

Google Scholar

[7] V. Depauw, H.J. Kim, G. Beaucarne, J. Poortmans, J. -P. Celis, R. Mertens, Anodisation of branched and columnar macropores in n-type silicon under front-side illumination, Phys Status Solidi C. 4 (2007) 1928-(1932).

DOI: 10.1002/pssc.200674330

Google Scholar

[8] R. Outemzabet, N. Gabouze, N. Kesri, H. Cheraga, Random macropore formation in n-type silicon under front side illumination: correlation with anisotropic etching, Phys Status Solidi C. 2 (2005) 3394-3398.

DOI: 10.1002/pssc.200461185

Google Scholar

[9] T. Wang, X.M. Li, W.L. Feng, W.L. Li, C. Tao, J. Wen, Structure and photoluminescence properties of the quasi-regular arrangements of porous silicon, optoelectron. adv. mat. 5 (2011) 495-498.

Google Scholar

[10] M. Christophersen, J. Carstensen, K. Voigt, H. Föll, Organic and aqueous electrolytes used for etching macro- and mesoporous silicon, Phys Status Solidi A. 197 (2003) 34-38.

DOI: 10.1002/pssa.200306464

Google Scholar

[11] M. Christophersen, J. Carstensen, H. Föll, Crystal orientation dependence of macropore formation in n-type silicon using organic electrolytes, Phys Status Solidi A. 182 (2000) 601-606.

DOI: 10.1002/1521-396x(200012)182:2<601::aid-pssa601>3.0.co;2-9

Google Scholar

[12] Kurt W. Kolasinski. Etching of silicon in fluoride solutions, Surf. Sci. 603 (2009) 1904-(1911).

Google Scholar

[13] H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon, Mater. Sci. Eng. R. 39 (2002) 93-141.

DOI: 10.1016/s0927-796x(02)00090-6

Google Scholar

[14] A.G. Cullis, L.T. Canham, P.D.J. Calcott, The structural and luminescence properties of porous silicon, J. Appl. Phys. 82 (1997) 909-965.

DOI: 10.1063/1.366536

Google Scholar

[15] G.G. Qin. Extended quantum confinement/luminescence center model for photoluminescence from oxidized porous silicon and nanometer-Si-particle-or nanometer-Ge-particle-embedded silicon oxide films, Mater. Res. Bull. 33 (1998) 1857-1866.

DOI: 10.1016/s0025-5408(98)00182-2

Google Scholar