Determination of Tannin in Coffee Pulp Using Experimental and Theoritical Approches

Article Preview

Abstract:

Currently, Doi Chaang village is the biggest area producing coffee in Thailand. Throughout seed to cup the pulp must be removed from coffee cherry after harvesting and left as waste. Tannin is one of various composition in coffee pulp which is affected by soil nutrition and pH. In this study, we have characterized the amount of tanin in coffee pulp using UV-Visible spectroscopy and electronic structure calculation. The results showed that coffee pulp consist of 5.68% tannin . It was determined to condense tannin form. Moreover, the pH of soil after treated with modified coffee pulp with water, Ca(OH)2, Na2S2O5, 2% Ca(OH)2, and 2% Na2S2O5 is higher than that with non-modified case. Likewise, DFT calculations predicted the structure of tannin with smaller HOMO-LUMO gap in the condense tannin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

683-688

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https: /en. wikipedia. org/wiki/Coffee_production_in_Thailand.

Google Scholar

[2] A.A.P. Almeida, A. Farah, D.A.M. Silva, E.A. Nunan, and B.M.A. Glória. Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria. J Agri. Food Chem. 54: 23(2006); 8738–8743.

DOI: 10.1021/jf0617317

Google Scholar

[3] J.B.U. Rojas, J.A.J. Verreth, J.H. van Weerd, and E.A. Huisman, Effect of Different Chemical Treatments on Nutritional and Antinutritional Perperties of Coffee Pulp. Anim. Feed Sci. Technol. 99(2002)195-204.

DOI: 10.1016/s0377-8401(02)00050-0

Google Scholar

[4] S. Wonghirundecha and P. Sumpavapol, Antibacterial Activity of Selected Plant By-products Against Food-borne Pathogenic (Published Conference Proceedings style), in 2012 International Conference on Nutrition and Food Science, IACSIT Press, Singapore. 116-120.

Google Scholar

[5] M. Beatriz, and T. C. Marco. Effect of Bisulfite Addition on the Chemical Composition and Cellular Content Fraction of Dehydrated Coffee pulp. (1977).

Google Scholar

[6] T. Nguyen, Evaluation of Coffee Husk Compost for Improving Soil Fertility and Sustainable Coffee Production in Rural Central Highland of Vietnam. Resources and Environment. (2013).

Google Scholar

[7] C. Cronje, and I. van Heerden, Microbial, chemical and physical aspects of citrus waste composting. Bioresource Technol. (2002)72-73.

Google Scholar

[8] P.K. Ashok, K. Upadhyaya, Tannins are Astrigent. J. Pharma. Phytochem. 1: 3(2012) 45-50.

Google Scholar

[9] L. S. Clesceri, A. E. Greenberg, L. and A. D. Eaton, American. Standard Methods for the Examination of Water and Wastewater. 20th ed, (1998).

Google Scholar

[10] F. Melone, R. Saladino, H. Lange, C. Crestini, Tannin Structural Elucidation and Quantitative 31P NMR Analysis. Model Compounds. J. Agric. Food Chem. 61 (2013) 9307-9315.

DOI: 10.1021/jf401477c

Google Scholar

[11] J.D. Reed, Nutritional toxicology of tannin and related polyphenols in forage legumes. J. Anim. Sci. 73(1995)1516-1528.

DOI: 10.2527/1995.7351516x

Google Scholar

[12] A. Kaur, P. Nain, and J. Nain, Hebal Plants used in Treatment of Rheumatoid Athritis: a Review. Inter J Pharma Pharma Sci. 4(2012).

Google Scholar

[13] N. Das, Recovery of precious metals through biosorption-A review. Hydrometallurgy. 103(2010)180-9.

DOI: 10.1016/j.hydromet.2010.03.016

Google Scholar

[14] M. Kacurakova , P. Capeka, V. Sasinkova, N. Wellnerb, and A. Ebringerova, FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses, Carbohyd Polym. 43(2000) 195–203.

DOI: 10.1016/s0144-8617(00)00151-x

Google Scholar

[15] N.F. L Machadoa, L.A.E. Batistade Carvalho, J.C. Oterob, and M.P.M. Marques, A conformational study of hydroxylated Isoflavones by vibrational spectroscopy coupled with DFT calculations. Vib Spectrosc. 68 (2013) 257-265.

DOI: 10.1016/j.vibspec.2013.08.010

Google Scholar

[16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. train, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, "Gaussian 03, Revision C. 02.

Google Scholar

[17] Materials Studio, Accelrys Software Inc., Sandiego, CA, 5. 5 edn, (2011).

Google Scholar