[1]
E. Lam, J.H.T. Luong, Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals, ACS Catal. 4 (2014) 3393−3410.
DOI: 10.1021/cs5008393
Google Scholar
[2]
G. Li, J. Li, W. Tan, H. Jin, H. Yang, J. Peng, C.J. Barrow, M. Yang, H. Wang, W. Yang, Preparation and characterization of the hydrogen storage activated carbon from coffee shell by microwave irradiation and KOH activation, Int. Biodeter. Biodegr. 113 (2016).
DOI: 10.1016/j.ibiod.2016.05.003
Google Scholar
[3]
L. Zuo, L. Jiang, E.S. Abdel-Halim, J. Zhu, Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction, Ultrason. Sonochem. 35 (2017) 219–225.
DOI: 10.1016/j.ultsonch.2016.09.021
Google Scholar
[4]
N. Pugazhenthiran, K. Kaviyarasan, T. Sivasankar, A. Emeline, D. Bahnemann, R.V. Mangalaraja, S. Anandan, Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium, Ultrason. Sonochem. 35 (2017) 342–350.
DOI: 10.1016/j.ultsonch.2016.10.012
Google Scholar
[5]
D.T. Nguyen, K. Kim, Structural evolution of highly porous/hollow ZnO nanoparticles in sonochemical process, Chem. Eng. J. 276 (2015) 11–19.
DOI: 10.1016/j.cej.2015.04.053
Google Scholar
[6]
W. Zhu, A. Shui, L. Xu, X. Cheng, P. Liu, H. Wang, Template-free sonochemical synthesis of hierarchically porous NiO microsphere, Ultrason. Sonochem. 21 (2014) 1707–1713.
DOI: 10.1016/j.ultsonch.2014.02.026
Google Scholar
[7]
E.J.M. Edralin, J.L. Garcia, F.M. Rosa, E.R. Punzalan, Sonochemical synthesis, characterization and photocatalytic properties of hydroxyapatite nano-rods derived from mussel shells, Mater. Lett. 196 (2017) 33–36.
DOI: 10.1016/j.matlet.2017.03.016
Google Scholar
[8]
O. Hamdaoui, S. Merouani, Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: Implication of iodine radicals in the oxidation Process, Ultrason. Sonochem. 37 (2017) 344–350.
DOI: 10.1016/j.ultsonch.2017.01.025
Google Scholar
[9]
I. Perelshtein, A. Lipovsky, N. Perkas, T. Tzanov, M. Arguirova, M. Leseva, A. Gedanken, Making the hospital a safer place by sonochemical coating of all ist textiles with antibacterial nanoparticles, Ultrason. Sonochem. 25 (2015) 82–88.
DOI: 10.1016/j.ultsonch.2014.12.012
Google Scholar
[10]
K. Kim, S. Jin, O.J. Kwon, Effect of Pd precursor status on sonochemical surface activation in Cu electroless deposition, Appl. Surf. Sci. 364 (2016) 45–50.
DOI: 10.1016/j.apsusc.2015.12.051
Google Scholar
[11]
H. Sayğılı, F. Güzel, High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption, J. Clean. Prod. 113 (2016) 995-1004.
DOI: 10.1016/j.jclepro.2015.12.055
Google Scholar
[12]
M.E. Parolo, M.C. Savini, R.M. Loewy, Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption, J. Environ. Manage. 196 (2017) 316-322.
DOI: 10.1016/j.jenvman.2017.03.018
Google Scholar
[13]
H. Jin, M.U. Hanif, S. Capareda, Z. Chang, H. Huang, Y. Ai, Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation, J. Environ. Chem. Eng. 4 (2016).
DOI: 10.1016/j.jece.2015.11.022
Google Scholar
[14]
E.I. El-Shafey, S.N.F. Ali, S. Al-Busafi, H.A.J. Al-Lawati, Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal, J. Env. Chem. Eng. 4 (2016) 2713–2724.
DOI: 10.1016/j.jece.2016.05.015
Google Scholar
[15]
W.N.R.W. Isahak, M.W.M. Hisham, M.A. Yarmo, Highly porous carbon materials from biomass by chemical and carbonization method: a comparison study", J. Chem. 2013 (2012) 620346.
DOI: 10.1155/2013/620346
Google Scholar
[16]
Powder Diffraction File, JCPDS-ICDD. 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA, (2001).
Google Scholar
[17]
D. Tahir, P.L. Gareso, D.A. Suriamiharja, S. Subara, N. Inzanaa, N. Palenteka, Physical properties of briquettes based on charcoal from groundnut shell, cassava peel, and durian shell, Proceeding of International Conference on Sustainable Energy Engineering and Application, Inna Garuda Hotel, Yogyakarta, Indonesia, 6 – 8 November (2012).
Google Scholar
[18]
S. Li, K. Han, J. Li, M. Li, C. Lu, Preparation and characterization of super activated carbon produced from gulfweed by KOH activation, Microporous Mesoporous Mater. 243 (2017) 291-300.
DOI: 10.1016/j.micromeso.2017.02.052
Google Scholar
[19]
R. Tseng, S. Tseng, Pore structure and adsorption performance of the KOH-activated carbons repared from corncob, J. Colloid. Interface. Sci. 287 (2005) 428–437.
DOI: 10.1016/j.jcis.2005.02.033
Google Scholar
[20]
M. Jamshidi, M. Ghaedi, K. Dashtian, S. Hajati, A.A. Bazrafshan, Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study, Ultrason. Sonochem. 32 (2016).
DOI: 10.1016/j.ultsonch.2016.03.004
Google Scholar
[21]
S. Asgharzadehahmadi, A.A.A. Raman, R. Parthasarathy, B. Sajjadi, Sonochemical reactors: Review on features, advantages and limitations, Renew. Sustainable Energy Reviews 63 (2016) 302–314.
DOI: 10.1016/j.rser.2016.05.030
Google Scholar