[1]
A. Tomašević, E. Kiss, S. Petrović, D. Mijin, Study on the photocatalytic degradation of insecticide methomyl in water, Desalination 262 (2010) 228–234.
DOI: 10.1016/j.desal.2010.06.019
Google Scholar
[2]
M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, Y. Ait-Ichou, Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system, Separ. Purif. Tech 61 (2008) 103–108.
DOI: 10.1016/j.seppur.2007.09.017
Google Scholar
[3]
A. Fujishima, T.N. Rao, D.N. Tryk, Titanium dioxide photocatalysis, J. Photoch. Photobiol. C 1 (2000) 1–21.
Google Scholar
[4]
Y.L. Min, F.J. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Hydrothermal synthesis of nanosized bismuth niobate and enhanced photocatalytic activity by coupling of graphene sheets, Chem. Eng. J. 209 (2012) 215–222.
DOI: 10.1016/j.cej.2012.07.109
Google Scholar
[5]
M.G. Mali, H. Yoon, M.W. Kim, M.T. Swihart, S.S. Al-Deyab, S.S. Yoon, Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting, Appl. Phys. Lett. 106 (2015).
DOI: 10.1063/1.4918583
Google Scholar
[6]
S. Chaiwichian, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts, Mater. Res. Bull. 54 (2014) 28–33.
DOI: 10.1016/j.materresbull.2014.03.012
Google Scholar
[7]
X. Lin, L. Yu, L. Yan, H. Li, Y. Yan, C. Liu, H. Zhai, Visible light photocatalytic activity of BiVO4 particles with different morphologies, Solid State Sci. 32 (2014) 61–66.
DOI: 10.1016/j.solidstatesciences.2014.03.018
Google Scholar
[8]
L. Shan, J. Mi, L. Dong, Z. Han, B. Liu, Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate, Chinese J. Chem. Eng. 22 (2014) 909–913.
DOI: 10.1016/j.cjche.2014.06.015
Google Scholar
[9]
C. Ravidhas, A.J. Josephine, R. Sudhagar, A. Devadoss, C. Terashima, K. Nakata, A. Fujishima, A.M. Ezhil Ra, C. Sanjeeviraja, Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: Structural, optical and photocatalytic properties, Mat. Sci. Semicon. Proc. 30 (2015).
DOI: 10.1016/j.mssp.2014.10.026
Google Scholar
[10]
G.N. Rocha, L.F.L. Melo, M.C. Castro Jr, A.P. Ayala, A.S. de Menezes, P.B.A. Fechine, Structural characterization of bismuth rare earth tungstates obtained by fast microwave-assisted solid-state synthesis, Mater. Chem. Phys. 139 (2013) 494–499.
DOI: 10.1016/j.matchemphys.2013.01.047
Google Scholar
[11]
Z.Y. Bian, Y.Q. Zhu, J.X. Zhang, A.Z. Ding, H. Wang, Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts, Chemosphere 117 (2014) 527–531.
DOI: 10.1016/j.chemosphere.2014.09.017
Google Scholar
[12]
H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, J. Deng, Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol, Appl. Catal. B Environ. 105 (2011) 326–334.
DOI: 10.1016/j.apcatb.2011.04.026
Google Scholar
[13]
Y. Qiangian, T.Z. Rong, X.Y. Jun, Synthesis of BiVO4 nanosheets-graphene composites toward improved visible light photoactivity, J. Energ. Chem. 23 (2014) 564–574.
DOI: 10.1016/s2095-4956(14)60186-8
Google Scholar
[14]
C. Karunakaran, S. Kalaivani, Enhanced visible light-photocatalysis by hydrothermally synthesized thallium-doped bismuth vanadate nanoparticles, Mat. Sci. Semicon. Proc. 27 (2014) 352–361.
DOI: 10.1016/j.mssp.2014.07.004
Google Scholar
[15]
S. Rella, A. Giuri, C.E. Corcione, M.R. Acocella, S. Colella, G. Guerra, A. Listorti, A. Rizzo, C. Malitesta, X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method, Vacuum 119 (2015) 159–162.
DOI: 10.1016/j.vacuum.2015.05.008
Google Scholar
[16]
C.Y. Ho, C.C. Liang, H.W. Wang, Investigation of low thermal reduction of graphene oxide for dye-sensitized solar cell counter electrode, Colloid Surface A 481 (2015) 222–228.
DOI: 10.1016/j.colsurfa.2015.04.045
Google Scholar
[17]
C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L.J. Romasanta, R.V.M.A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon 65 (2013).
DOI: 10.1016/j.carbon.2013.08.009
Google Scholar
[18]
X. Hu, Y. Yu, Y. Wang, J. Zhou, L. Song, Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution. Appl. Surf. Sci. 329 (2015) 83–86.
DOI: 10.1016/j.apsusc.2014.12.110
Google Scholar
[19]
V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, K. Kern, Chemical vapor deposition repair of graphene oxide: A route to highly conductive graphene monolayers, Adv. Mater. 21 (2009) 4683–4686.
DOI: 10.1002/adma.200901582
Google Scholar
[20]
W.S. Hummers, Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339.
DOI: 10.1021/ja01539a017
Google Scholar
[21]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 14-0133, Swarthmore, PA.
Google Scholar
[22]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 14-0688, Swarthmore, PA.
Google Scholar
[23]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 01-0646, Swarthmore, PA.
Google Scholar
[24]
D. Zhou, Z. Zhu, B. Liu, Solvothermal synthesis and characterization of a novel reduced graphene oxide (RGO)/BiVO4/SiO2 nanocomposites, Mater. Lett. 185 (2016) 32–35.
DOI: 10.1016/j.matlet.2016.08.098
Google Scholar