The Photocatalytic Degradation of Methylene Blue Using Bismuth Vanadate (Bi2VO5.5) Powder

Article Preview

Abstract:

Bismuth vanadate (Bi2VO5.5) powder has been successfully prepared by microwave method. Bismuth nitrate and ammonium vanadate were used as the starting precursors with the mole ratio of 2:1 in 2-propanol. The microwave power was 500 Watt for 2-6 min. The yellow powder was obtained and calcined at 500°C for 2h. The structure was identified by X-ray diffraction (XRD). The morphology was investigated by scanning electron microscopy (SEM). The chemical composition was determined by energy dispersive X-ray spectrometry (EDXS). The functional groups were investigated by fourier transform infrared spectrometry (FTIR) The photocatalytic degradation of methylene blue (MB) using Bi2VO5.5 powder was studied by ultraviolet-visible spectrophotometry (UV-Vis).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

707-712

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yang, L. Xu, H. Wang, W. Wang, L. Zhang, TiO2/graphene porous composite and its photocatalytic degradation of methylene blue, Mater. Design108 (2016) 632–639.

DOI: 10.1016/j.matdes.2016.06.104

Google Scholar

[2] A. Khatri, M.H. Peerzada, M. Mohsin, M. White, A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution, J. Clean. Prod. 87 (2015) 50–57.

DOI: 10.1016/j.jclepro.2014.09.017

Google Scholar

[3] K. Shantha, K.B.R. Varma, Frequency dependence of the dielectric properties of ferroelectric Bi2VO5. 5 ceramics, Solid State Ionics 99 (1997) 225-231.

DOI: 10.1016/s0167-2738(97)00254-3

Google Scholar

[4] A. Cherrak, R. Hubaut, Y. Barbaux, G. Mairesse, Catalytic properties of bismuth vanadatesbased catalysts in oxidative coupling of methane and oxidative dehydrogenation of propane, Catal. Lett. 15 (1992) 377-383.

DOI: 10.1007/bf00769161

Google Scholar

[5] P.B. Avakyan, M.D. Nersesyan, A.G. Merzhanov, New materials for electronic engineering, Am. Ceram. Soc. Bull. 75(2) (1996) 50-55.

Google Scholar

[6] P. Shuk, H. -D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ionics 89 (1996) 179-196.

DOI: 10.1016/0167-2738(96)00348-7

Google Scholar

[7] M.E.A. Dompablo, F.G. Alvarado, E. Morán, Bi4V2O11 and related compounds as positive electrode materials for lithium rechargeable batteries, Solid State Ionics 91 (1996) 273-278.

DOI: 10.1016/s0167-2738(96)83029-3

Google Scholar

[8] R.W. Siegel, Creating nanophase materials, Sci. Am. 275 (1996) 42-47.

Google Scholar

[9] K. Shantha, K.B.R. Varma, Preparation and characterization of nanocrystalline powders ofbismuth vanadate, Mat. Sci. Eng. B 56 (1999) 66-75.

Google Scholar

[10] A.K. Bhattacharya, K. K Mallick, P.A. Thomas, Low temperature synthesis of a bismuthvanadium oxide isomorphous with γ-Bi4V2O11, Solid State Commun. 91(5) (1994) 357-360.

DOI: 10.1016/0038-1098(94)90633-5

Google Scholar

[11] J.W. Pell, J.Y. Ying, H.C. Loye, Sol-gel synthesis of α-Bi2VO5. 5 using a soluble bismuth precursor, Mater. Lett. 25 (1995) 157-160.

DOI: 10.1016/0167-577x(95)00163-8

Google Scholar

[12] B. Vaidyanathan, M. Ganguli, K.J. Rao, Fast solid state synthesis of metal vanadates and chalcogenides using microwave irradiation, Mater. Res. Bull. 30 (1995) 1173-1177.

DOI: 10.1016/0025-5408(95)00099-2

Google Scholar

[13] Y. -J. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114 (2014) 6462–6555.

DOI: 10.1021/cr400366s

Google Scholar

[14] Y. Zhang, G. Li, X. Yang, H. Yang, Z. Lu, R. Chen, Monoclinic BiVO4 micro-/nanostructures: microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities, J. Alloy. Compd. 551 (2013) 544-550.

DOI: 10.1016/j.jallcom.2012.11.017

Google Scholar

[15] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File Card No. 41-0575, Swarthmore, PA.

Google Scholar

[16] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File Card No. 14-0688, Swarthmore, PA.

Google Scholar

[17] N. Kumari, S.B. Krupanidhi, K.B.R. Varma, Structural and electrical characterization of Bi2VO5. 5/Bi4Ti3O12 bilayer thin films deposited by pulsed laser ablation technique, Nat. Sci. 2 (2010) 1073-1078.

DOI: 10.4236/ns.2010.210133

Google Scholar

[18] B. Yan, X.Q. Su, Chemical co-precipitation synthesis of luminescent BixY1-xVO4: RE (RE =Eu3+, Dy3+, Er3+) phosphors from hybrid precursors, J. Non-Cryst. Solids 352 (2006) 3275-3279.

DOI: 10.1016/j.jnoncrysol.2006.05.023

Google Scholar

[19] P. Pookmanee, P. Intaphong, J. Phanmalee, W. Kangwansupamonkon, S. Phanichphant, Characterization of bismuth vanadate nanopowder prepared by microwave method, Mater. Sci. Forum 872 (2016) 253-257.

DOI: 10.4028/www.scientific.net/msf.872.253

Google Scholar

[20] M. Alga, A. Ammar, R. Essalim, B. Tanouti, F. Mauvy, R. Decourt, Synthesis, sintering andelectrical properties of P-doped Bi4V2O11 ceramics, Solid State Sci. 7 (2005) 1173-1179.

DOI: 10.1016/j.solidstatesciences.2005.06.011

Google Scholar

[21] P. Jansanthea, P. Pookmanee, S. Phaisansuthichol, S. Satienperakul, S. Sangsrichan, R. Puntharod, S. Phanichphant, BiVO4 powder synthesized via the solvothermal method, Adv. Mater. Res. 931-932 (2014) 157-161.

DOI: 10.4028/www.scientific.net/amr.931-932.157

Google Scholar

[22] P. Pookmanee, S. Kojinok, R. Puntharod, S. Sangsrichan, S. Phanichphant, Preparation and characterization of BiVO4 powder by the sol-gel method, Ferroelectrics 456 (2013) 45-54.

DOI: 10.1080/00150193.2013.846197

Google Scholar

[23] R. Kaur, S. Thakur, K. Singh, Effect of two different sites substitution on structural and optical properties of Bi4V2O11-δ, Physica B 440 (2014) 78-82.

DOI: 10.1016/j.physb.2014.01.032

Google Scholar

[24] N. Ekthammathat, A. Phuruangrat, T. Thongtem, S. Thongtem, Synthesis and characterization of Ce-doped CuO nanostructures and their photocatalytic activities, Mater. Lett. 167 (2016) 266-269.

DOI: 10.1016/j.matlet.2016.01.020

Google Scholar