Exploitation of Ag3PO4 Impregnated Alginate Beads for the Photocatalytic Degradation of Dye Solution under Sunlight Irradiation

Article Preview

Abstract:

Ag3PO4-alginate beads (AAB) were synthesized by simple precipitation method and their structure was characterized by XRD, FT-IR and SEM/EDS, respectively. The AAB was evaluated as the photocatalyst for degradation of methylene blue (MB) under sunlight irradiation. The results showed that AAB exhibited the high performance for degradation of MB (97.6%) in 60 min. The kinetic studied demonstrated that the photocatalytic reactions followed the pseudo first-order model. Moreover, AAB can maintain full photodegradation activity for at least five cycles. Consequently, the AAB are promising materials for the photocatalytic of dyes or similar organic contaminant in environmental pollution cleanup.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

689-694

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Katsumata, T. Hayashi, M. Taniguchi, T. Suzuki, Highly efficient visible-light driven AgBr/Ag3PO4 hybrid photocatalysts with enhanced photocatalytic activity, Matter. Sci. 25(2014)68-75.

DOI: 10.1016/j.mssp.2014.01.033

Google Scholar

[2] X. Yao, X. Liu, D. Zhu, C. Zhao, L. Lu, Synthesis of cube-like Ag/AgCl plasmonic photocatalyst with enhanced visible light photocatalytic activity, Catal. Commun. 59(2015)151-155.

DOI: 10.1016/j.catcom.2014.10.012

Google Scholar

[3] H. Iric, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B. 97(2003)5483-5486.

Google Scholar

[4] Y. Cong, J.L. Zhang, F. Chan, M. Anpo, Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III), J. Phys. Chem. C. 111(2007)10618-10623.

DOI: 10.1021/jp0727493

Google Scholar

[5] K. Wanchai, Photocatalytic Degradation of Phenol by Impure BiFeO3 under Visible Light Irradiation, Key Eng. Mater. 659(2015)274-278.

DOI: 10.4028/www.scientific.net/kem.659.274

Google Scholar

[6] Z. Yi, J. Ye, N.K. Kikugawa, T. Kako, S. Ougang, H. S. Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Matter. 9(2010)559-564.

DOI: 10.1038/nmat2780

Google Scholar

[7] R. Li, X. Song, Y. Huang, Y. Fang, M. Jia, M. Ma, Visible-light photocatalytic degradation of azo dyes in water by Ag3PO4: An unusual dependency between adsorption and the degradation rate on pH, J. Mol. Catal. A. 421(2016)57-65.

DOI: 10.1016/j.molcata.2016.05.009

Google Scholar

[8] J. Wang, F. Teng, M.D. Chen, J.J. Xu, Y.Q. Song, X.L. Zhou, Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity, Cryst. Eng. Comm. 15(2013)39-42.

DOI: 10.1039/c2ce26060c

Google Scholar

[9] K. Wang, J. Xu, N. Li, M. Chen, F. Teng, Y. Zhu, W. Yao, Highly efficient photodegradation of RhB-MO mixture dye wastewater by Ag3PO4 dodecahedrons under acidic condition, J. Mol. Cat. A: Chem. 393(2014)302-308.

DOI: 10.1016/j.molcata.2014.06.026

Google Scholar

[10] Z. Majinia, A. Idris, Photocatalytic reduction of iodine in radioactive waste water using maghemite and titania nanoparticles in PVA-alginate beads, J. Taiwan Inst. Chem. Eng. 54(2015)137-144.

DOI: 10.1016/j.jtice.2015.03.005

Google Scholar

[11] M.H. Farzana, S. Meenakshi, Photo-Decolorization and Detoxification of Toxic Dyes Using Titanium Dioxide Impregnated Chitosan Beads, Int. J. Biol. Macromol. 72(2015)1265-1271.

DOI: 10.1016/j.ijbiomac.2014.07.021

Google Scholar

[12] X. Zhang, X. Zhao, H. Su, Degradation characteristic of TiO2-chitosan adsorbent on Rhodamine B and purification of industrial wastewater, J. Chem. Eng. 28(2011)1241-1246.

DOI: 10.1007/s11814-010-0501-3

Google Scholar

[13] X. Tao, J. Su, L. Wang, A new heterogeneous catalytic system for wastewater treatment: Fe-immobilized polyelectrolyte microshells for accumulation and visible light-assisted photooxidative degradation of dye pollutants, J. Chem. Appl. Catal. A. 280(2008).

DOI: 10.1016/j.molcata.2007.11.006

Google Scholar

[14] Y. Dong, W. Dong, Y. Cao, Z. Han, Z. Ding, Preparation and catalytic acitivity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation, Catal. Today. 175(2011)346-355.

DOI: 10.1016/j.cattod.2011.03.035

Google Scholar

[15] M. Ge, M. Zhu, N. Zhao, Y.P. Li, L. Liu, Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension, Ind. Eng. Chem. Res. 51(2012)5167-5173.

DOI: 10.1021/ie202864n

Google Scholar

[16] U. I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol. Chem. 9(2008)1-2.

DOI: 10.1016/j.jphotochemrev.2007.12.003

Google Scholar

[17] S. Sarkar, S. Chakraborty, C. Bhattacharjee, Photocatalytic degradation of pharmaceutical waste by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR), Ecotox. Environ. Safe. 121(2015)263-270.

DOI: 10.1016/j.ecoenv.2015.02.035

Google Scholar

[18] L.Y. Yang, S.Y. Dong, J.H. Sun, J.L. Feng, Q.H. Wu, S.P. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard, Matter., 179(2010)438-443.

DOI: 10.1016/j.jhazmat.2010.03.023

Google Scholar

[19] L. Song, Y. Li, H. Tian, X. Wu, S. Fang, S. Zhang, Synthesis of AgBr/Ag4P2O7 composite photocatalyst and enhanced photocatalytic performance, Mater. Sci. Eng. B. 189(2014)70-75.

DOI: 10.1016/j.mseb.2014.08.001

Google Scholar