Effect of Octacalcium Phosphate-Based Bone Substitute Materials on Oriented Bone Regeneration

Article Preview

Abstract:

The characteristics and the biological responses of octacalcium phosphate (OCP) crystals, obtained in the presence of natural polymers, were summarized based on our studies reported. OCP obtained with collagen molecules in the solution had a plate-like morphology while OCP obtained with gelatin molecules in the solution exhibited elongated morphology toward long axis of the crystals. Oriented bone matrix formation was observed by the OCP inclusion in gelatin sponge in a critical-sized rat calvaria defect within the implantation periods around 8 weeks. It seems likely that specific crystal property of OCP obtained in distinct preparation conditions may affect bone tissue response probably through the modulation of OCP crystal characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-227

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Rey, C. Combes, What bridges mineral platelets of bone? Bonekey Rep. 3 (2014) 586.

DOI: 10.1038/bonekey.2014.81

Google Scholar

[2] O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Bone formation on synthetic precursors of hydroxyapatite. Tohoku J. Exp. Med. 164 (1991) 37–50.

DOI: 10.1620/tjem.164.37

Google Scholar

[3] O. Suzuki, S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, R. Kamijo, Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27 (2006) 2671-2681.

DOI: 10.1016/j.biomaterials.2005.12.004

Google Scholar

[4] W.E. Brown, J.P. Smith, J.R. Lehr, A.W. Frazier, Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196 (1962) 1050–1055.

DOI: 10.1038/1961050a0

Google Scholar

[5] O. Suzuki, H. Yagishita, T. Amano, T. Aoba, Reversible structural changes of octacalcium phosphate and labile acid phosphate. J. Dent. Res. 74 (1995) 1764-1769.

DOI: 10.1177/00220345950740110801

Google Scholar

[6] T. Yokoi, M. Kamitakahara, C. Ohtsuki, Continuous expansion of the interplanar spacing of octacalcium phosphate by incorporation of dicarboxylate ions with a side chain. Dalton Trans. 44 (2015) 7943-7950.

DOI: 10.1039/c4dt03943b

Google Scholar

[7] W.J. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H. Bomans, P.M. Frederik, J. Laven, P, van der Schoot, B. Aichmayer, G. de With, J.J. DeYoreo, N.A. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4 (2013).

DOI: 10.1038/ncomms2490

Google Scholar

[8] O. Suzuki, Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater. 6 (2010) 3379-3387.

DOI: 10.1016/j.actbio.2010.04.002

Google Scholar

[9] O. Suzuki, Octacalcium phosphate (OCP)-based bone substitute materials. Japanese Dent. Sci. Rev. 49 (2013) 58-71.

DOI: 10.1016/j.jdsr.2013.01.001

Google Scholar

[10] A. Bigi, E. Boanini, B. Bracci, G. Falini, K. Rubini, Interaction of acidic poly-amino acids with octacalcium phosphate. J Inorg. Biochem. 95 (2003) 291-296.

DOI: 10.1016/s0162-0134(03)00127-2

Google Scholar

[11] N.S. Chickerur, M.S. Tung, W.E. Brown, A mechanism for incorporation of carbonate into apatite. Calcif. Tissue Int. 32 (1980) 55–62.

DOI: 10.1007/bf02408521

Google Scholar

[12] O. Suzuki, H. Yagishita, M. Yamazaki, T. Aoba, Adsorption of bovine serum albumin onto octacalcium phosphate and its hydrolyzates. Cells Mater. 5 (1995) 45–54.

Google Scholar

[13] Y. Honda, T. Anada, S. Kamakura, S. Morimoto, T. Kuriyagawa, O. Suzuki, The effect of microstructure of octacalcium phosphate on the bone regenerative property. Tissue Eng. Part A 15 (2009) 1965–(1973).

DOI: 10.1089/ten.tea.2008.0300

Google Scholar

[14] N. Miyatake, K.N. Kishimoto, T. Anada, H. Imaizumi, E. Itoi, O. Suzuki, Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials 30 (2009) 1005–1014.

DOI: 10.1016/j.biomaterials.2008.10.058

Google Scholar

[15] R. Ishiko-Uzuka, T. Anada, K. Kobayashi, T. Kawai, Y. Tanuma, K. Sasaki, O. Suzuki, Oriented bone regenerative capacity of octacalcium phosphate/gelatin composites obtained through two-step crystal preparation method. J. Biomed. Mater. Res. B Appl. Biomater. 105 (2017).

DOI: 10.1002/jbm.b.33640

Google Scholar

[16] J. Moradian-Oldak, M. Iijima, N. Bouropoulos, H.B. Wen. Assembly of amelogenin proteolytic products and control of octacalcium phosphate crystal morphology. Connect. Tissue Res. 44(Suppl 1) (2003) 58–64.

DOI: 10.1080/03008200390152106

Google Scholar

[17] Y. Ezoe, T. Anada, H. Yamazaki, T. Handa, K. Kobayashi, T. Takahashi, O. Suzuki, Characterization of partially hydrolyzed OCP crystals deposited in a gelatin matrix as a scaffold for bone tissue engineering. J. Nanopart. Res. 17 (2015) 127.

DOI: 10.1007/s11051-015-2864-1

Google Scholar

[18] H. Imaizumi, M. Sakurai, O. Kashimoto, T. Kikawa, O. Suzuki, Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Calcif. Tissue Int. 78 (2006) 45-54.

DOI: 10.1007/s00223-005-0170-0

Google Scholar

[19] K. Suzuki, T. Anada, T. Miyazaki, N. Miyatake, Y. Honda, K.N. Kishimoto, M. Hosaka, H. Imaizumi, E. Itoi, O. Suzuki, Effect of addition of hyaluronic acids on the osteoconductivity and biodegradability of synthetic octacalcium phosphate. Acta Biomater. 10 ( 2014) 531-43.

DOI: 10.1016/j.actbio.2013.09.005

Google Scholar

[20] T. Kawai, S. Echigo, K. Matsui, Y. Tanuma, T. Takahashi, O. Suzuki, Kamakura S. First clinical application of octacalcium phosphate collagen composite in human bone defect. Tissue Eng. Part A 20 (2014) 1336-1341.

DOI: 10.1089/ten.tea.2013.0508

Google Scholar