[1]
EN 1998–1 Eurocode 8: design of structures for earthquake resistance, Part 1, General Rules, Seismic Actions and Rules for Buildings, European Commitee for Standardization (CEN), Brussels, Belgium, CEN (2005).
DOI: 10.1002/9783433609194.ch3
Google Scholar
[2]
A. Villani, J.M. Castro, A.Y. Elghazouli, Improved seismic design procedure for steel moment frames, Proceedings of the 6th International Conference on Behaviour of Steel in Seismic Areas: STESSA 2009, Philadelphia, PA, USA, (2009).
DOI: 10.1201/9780203861592.ch97
Google Scholar
[3]
FEMA P695: Quantification of building seismic performance factors, Federal Emergency Management Agency (FEMA), Washington, D.C., USA, FEMA (2009).
DOI: 10.1007/springerreference_225387
Google Scholar
[4]
C.M. Ramirez, E. Miranda, Building-Specific Loss Estimation Methods & Tools for Simplified Performance-Based Earthquake Engineering. Technical Report No. 171, John A. Blume Earthquake Engineering Center, Stanford, CA, USA, (2009).
Google Scholar
[5]
K.A. Porter, An Overview of PEER's Performance-Based Earthquake Engineering Methodology, Proceedings of Ninth International Conference on Applications of Statistics and Probability in Civil Engineering: ICASP9, SF, CA, USA, (2003).
Google Scholar
[6]
EN 1993-1-1 Eurocode 3: Design of steel structures. Part 1-1, General rules and rules for buildings, European Committee for Standardization (CEN), Brussels, Belgium, CEN (2005).
Google Scholar
[7]
A.Y. Elghazouli, Seismic Design of Buildings to Eurocode 8, CRC Press, Florida, USA, (2009).
Google Scholar
[8]
PEER. OpenSees: Open system for earthquake engineering simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA, (2006).
Google Scholar
[9]
D.G. Lignos, H., Krawinkler, Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137(11): 1291–1302, (2011).
DOI: 10.1061/(asce)st.1943-541x.0000376
Google Scholar
[10]
M. Araújo, L. Macedo, J.M. Castro, Calibration of strength and stiffness deterioration hysteretic models using optimization algorithms, Proceedings of the 8th International Conference on Behavior of Steel Structures in Seismic Areas: STESSA'15, Shanghai, China, (2015).
Google Scholar
[11]
F. Zareian, D.G. Lignos, H. Krawinkler, Evaluation of seismic colapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology, Proceedings of the 2010 Structures Congress, Orlando, FL, USA, (2010).
DOI: 10.1061/41130(369)116
Google Scholar
[12]
D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthquake Engineering and Structural Dynamics, 31(3): 491–514, (2001).
DOI: 10.1002/eqe.141
Google Scholar
[13]
HAZUS - Earthquake loss estimation methodology. Federal Emergency Management Agency, Washington, DC, (1999).
Google Scholar
[14]
N. Jayaram, N. Shome, M. Rahnama, Development of earthquake vulnerability functions for tall buildings, Earthquake Engineering & Structural Dynamics, 41: 1495–1514, (2012).
DOI: 10.1002/eqe.2231
Google Scholar
[15]
C.M. Ramirez, E. Miranda, Significance of residual drifts in building earthquake loss estimation, Earthquake Engineering & Structural Dynamics, 41(11): 1477–1493, (2012).
DOI: 10.1002/eqe.2217
Google Scholar
[16]
M. Pagani, D. Monelli, G. Weatherill, L. Danciu, H. Crowley, V. Silva, P. Hanshaw, L. Butler, M. Nastasi, L. Panzeri, M. Simionato, D. Viganò, OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model, Seismological Research Letters, 85(3): 692–702, (2014).
DOI: 10.1785/0220130087
Google Scholar
[17]
J. Woessner, L. Danciu, D. Giardini, H. Crowley, F. Cotton, G. Grünthal, G. Valensise, R. Arvidsson, R. Basili, M.N. Demircioglu, S. Hiemer, C. Meletti, R.W. Musson, A.N. Rovida, K. Sesetyan, M. Stucchi, The 2013 European Seismic Hazard Model: key components and results, Bulletin of Earthquake Engineering, 13(12): 3553–3596, The SHARE consortium, (2015).
DOI: 10.1007/s10518-015-9795-1
Google Scholar
[18]
S.P. Vilanova, J.F.B.D. Fonseca, Probabilistic Seismic-Hazard Assessment for Portugal, Bulletin of the Seismological Society of America, 97(5): 1702–1717, (2007).
DOI: 10.1785/0120050198
Google Scholar
[19]
G.M. Atkinson, D.M. Boore, Earthquake Ground-Motion Prediction Equations for Eastern North America, Bulletin of the Seismological Society of America, 96(6): 2181–2205, (2006).
DOI: 10.1785/0120050245
Google Scholar
[20]
S. Akkar, J.J. Bommer, Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismological Research Letters, 81(2): 195–206, (2010).
DOI: 10.1785/gssrl.81.2.195
Google Scholar
[21]
V. Silva, H. Crowley, H. Varum, Seismic risk assessment for mainland Portugal", Bulletin of Earthquake Engineering, 13: 429–457, (2015).
DOI: 10.1007/s10518-014-9630-0
Google Scholar
[22]
P. Bazurro, C.A. Cornell, Disaggregation of Seismic Hazard, Bulletin of the Seismological Society of America, 89(2): 501–520, (2011).
DOI: 10.1785/bssa0890020501
Google Scholar
[23]
L. Macedo, J.M. Castro, SelEQ: An advanced ground motion record selection and scaling framework, Advances in Engineering Software (in press), (2017).
DOI: 10.1016/j.advengsoft.2017.05.005
Google Scholar
[24]
C.B. Haselton, J.W. Baker, A.B. Liel, G.G. Deierlein, Accounting for Ground Motion Spectral Shape Characteristics in Structural Collapse Assessment Through an Adjustment for Epsilon, Journal of Structural Engineering, 137(3): 332–344, (2011).
DOI: 10.1061/(asce)st.1943-541x.0000103
Google Scholar