[1]
S. -H. Hwang and D. G. Lignos, Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in highly seismic regions, Earthq. Eng. Struct. Dyn., (2017).
DOI: 10.1002/eqe.2898
Google Scholar
[2]
A. Elkady and D. G. Lignos, Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns, Bull. Earthq. Eng., vol. 13, no. 4, p.1097–1118, (2015).
DOI: 10.1007/s10518-014-9640-y
Google Scholar
[3]
A. Elkady and D. G. Lignos, Dynamic Stability of Deep and Slender Wide-Flange Steel Columns - Full Scale Experiments, in Proceedings of the Annual Stability Conference Structural Stability Research Council, Orlando, Florida, USA, (2016).
DOI: 10.1061/(asce)st.1943-541x.0001937
Google Scholar
[4]
J. Fogarty and S. El-Tawil, Collapse Resistance of Steel Columns under Combined Axial and Lateral Loading, J. Struct. Eng., vol. 142, no. 1, p.04015091, (2016).
DOI: 10.1061/(asce)st.1943-541x.0001350
Google Scholar
[5]
J. D. Newell and C. -M. Uang, Cyclic Behavior of Steel Wide-Flange Columns Subjected to Large Drift, J. Struct. Eng., vol. 134, no. 8, p.1334–1342, (2008).
DOI: 10.1061/(asce)0733-9445(2008)134:8(1334)
Google Scholar
[6]
Y. Suzuki and D. G. Lignos, Large Scale Collapse Experiments of Wide Flange Steel Beam-Columns, in Proceedings of the 8th International Conference on Behavior of Steel Structures in Seismic Areas (STESSA), Shanghai, China, (2015).
Google Scholar
[7]
C. M. Uang, G. Ozkula, and J. Harris, Observations from cyclic tests on deep, slender wide-flange structural, in Proceedings of the Annual Stability Conference Structural Stability Research Council, Tennessee, Nashville, USA, 2015, p.247–263.
DOI: 10.6028/nist.tn.2169
Google Scholar
[8]
A. Elkady and D. G. Lignos, Full-Scale Cyclic Testing of Deep Slender Wide-Flange Steel Beam-Columns under Unidirectional and Bidirectional Lateral Drift Demands, 16th World Conf. Earthq. Eng. 16WCEE Santiago Chile Num 944, Jan. (2017).
DOI: 10.1061/(asce)st.1943-541x.0001937
Google Scholar
[9]
C. M. Ramirez and E. Miranda, Significance of residual drifts in building earthquake loss estimation, Earthq. Eng. Struct. Dyn., vol. 41, no. 11, p.1477–1493, Sep. (2012).
DOI: 10.1002/eqe.2217
Google Scholar
[10]
FEMA, Seismic performance assessment of buildings, volume 1-methodology, the Applied Technology Council for the Federal Emergency Management Agency, Washington, FEMA P-58-1, (2012).
Google Scholar
[11]
FEMA, Seismic performance assessment of buildings, volume 2-implementation guide, the Applied Technology Council for the Federal Emergency Management Agency, Washington, FEMA P-58-2, (2012).
Google Scholar
[12]
A. Elkady and D. G. Lignos, Stability Requirements of Deep Steel Wide-Flange Columns under Cyclic Loading, in Proceedings of the Annual Stability Conference Structural Stability Research Council, San Antonio, Texas, USA, (2017).
DOI: 10.1061/(asce)st.1943-541x.0001937
Google Scholar
[13]
G. A. MacRae, C. R. Urmson, W. R. Walpole, P. Moss, K. Hyde, and C. Clifton, Axial shortening of steel columns in buildings subjected to earthquakes, Bull. N. Z. Soc. Earthq. Eng., vol. 42, no. 4, p.275, (2009).
DOI: 10.5459/bnzsee.42.4.275-287
Google Scholar
[14]
D. A. Grilli, R. Jones, and A. M. Kanvinde, Seismic Performance of Embedded Column Base Connections Subjected to Axial and Lateral Loads, J. Struct. Eng., vol. 143, no. 5, p.04017010, Jan. (2017).
DOI: 10.1061/(asce)st.1943-541x.0001741
Google Scholar
[15]
G. C. Clifton, M. Bruneau, G. A. MacRae, R. Leon, and A. Fussell, Steel Structures Damage from the Christchurch Earthquake Series of 2010 and 2011, Bull. N. Z. Soc. Earthq. Eng., vol. 44, no. 4, p.297–318, Dec. (2011).
DOI: 10.5459/bnzsee.44.4.297-318
Google Scholar
[16]
G. A. MacRae, G. C. Clifton, M. Bruneau, A. M. Kanvinde, and S. Gardiner, Lessons from Steel Structures in Christchurch Earthquakes, 8th Int. Conf. Behav. Steel Struct. Seism. Areas STESSA Shanghai China, p.1474–1481, Jul. (2015).
DOI: 10.1201/b11396-4
Google Scholar
[17]
D. G. Lignos, T. Hikino, Y. Matsuoka, and M. Nakashima, Collapse Assessment of Steel Moment Frames Based on E-Defense Full-Scale Shake Table Collapse Tests, J. Struct. Eng., vol. 139, no. 1, p.120–132, (2013).
DOI: 10.1061/(asce)st.1943-541x.0000608
Google Scholar
[18]
H. Inamasu, A. M. Kanvinde, and D. G. Lignos, The Seismic Stability and Ductility of Steel Columns Interacting with Concrete Footings, in Composite Construction in Steel and Concrete VIII, Wyoming, USA, (2017).
Google Scholar
[19]
J. Liu and A. Astaneh-Asl, Moment–Rotation Parameters for Composite Shear Tab Connections, J. Struct. Eng., vol. 130, no. 9, p.1371–1380, (2004).
DOI: 10.1061/(asce)0733-9445(2004)130:9(1371)
Google Scholar
[20]
X. Zhang and J. M. Ricles, Experimental Evaluation of Reduced Beam Section Connections to Deep Columns, J. Struct. Eng., vol. 132, no. 3, p.346–357, (2006).
DOI: 10.1061/(asce)0733-9445(2006)132:3(346)
Google Scholar
[21]
B. Chi and C. M. Uang, Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns, J. Struct. Eng., vol. 128, no. 4, p.464–473, (2002).
DOI: 10.1061/(asce)0733-9445(2002)128:4(464)
Google Scholar
[22]
D. G. Lignos, D. Kolios, and E. Miranda, Fragility assessment of reduced beam section moment connections, J. Struct. Eng., vol. 136, no. 9, p.1140–1150, (2010).
DOI: 10.1061/(asce)st.1943-541x.0000214
Google Scholar
[23]
D. G. Lignos and H. Krawinkler, Development and utilization of structural component databases for performance-based earthquake engineering, J. Struct. Eng., vol. 139, no. 8, p.1382–1394, (2012).
DOI: 10.1061/(asce)st.1943-541x.0000646
Google Scholar
[24]
AISC, Seismic Provisions for Structural Steel Buildings. ANSI/AISC-341-16. American Institute of Steel Construction, (2016).
DOI: 10.1201/b11248-16
Google Scholar