[1]
Behrens, B.-A., Bouguecha, A., Hadifi, T., and Mielke, J. 2011. Advanced friction modeling for bulk metal forming processes. Prod. Eng. Res. Devel. 5, 6, 621–627.
DOI: 10.1007/s11740-011-0344-8
Google Scholar
[2]
Yilkiran, T., Behrens, B.-A., Paschke, H., Weber, M., and Brand, H. 2012. The potential of plasma deposition techniques in the application field of forging processes. Archives of Civil and Mechanical Engineering 12, 3, 284–291.
DOI: 10.1016/j.acme.2012.06.002
Google Scholar
[3]
Behrens, B. A., Yilkiran, T., Braeuer, G., Paschke, H., and Weber, M. 2013. Potential of Duplex Plasma Deposition Processes for the Improvement of Wear Resistance of Hot Forging Dies. KEM 554-557, 345–358.
DOI: 10.4028/www.scientific.net/kem.554-557.345
Google Scholar
[4]
Behrens, B.-A., Bräuer, G., Paschke, H., and Bistron, M. 2011. Reduction of wear at hot forging dies by using coating systems containing boron. Prod. Eng. Res. Devel. 5, 5, 497–506.
DOI: 10.1007/s11740-011-0308-z
Google Scholar
[5]
Behrens, B.-A., Puppa, J., and Menze, J. 2014. Abkühlverhalten nitrierter und keramisch beschichteter Schmiedewerkzeuge. wt-online 104, 10, 686–690.
DOI: 10.37544/1436-4980-2014-10-686
Google Scholar
[6]
Behrens, B. A. and Puppa, J. 2015. Optimization of Cooling and Lubrication for Nitrided and Ceramic-Coated Hot Forging Dies. AMM 794, 97–104.
DOI: 10.4028/www.scientific.net/amm.794.97
Google Scholar
[7]
Bartz, W. J. op. 1993. Selbstschmierende und wartungsfreie Gleitlager. Typen, Eigenschaften, Einsatzgrenzen und Anwendungen. Kontakt & Studium Tribologie. expert-Verlag, Ehningen bei Böblingen.
Google Scholar
[8]
Hofmann, H. and Spindler, J. 2004. Verfahren der Oberflächentechnik. Grundlagen - Vorbehandlung - Beschichtung - Oberflächenreaktionen - Prüfung ; mit 72 Tabellen, zahlreichen Beispielen sowie einer CD-ROM. Fachbuchverl. Leipzig im Carl-Hanser-Verl., München.
Google Scholar
[9]
Bay, N. 1994. The state of the art in cold forging lubrication. Journal of Materials Processing Technology 46, 1-2, 19–40.
DOI: 10.1016/0924-0136(94)90100-7
Google Scholar
[10]
Gariety, M., Ngaile, G., and Altan, T. 2007. Evaluation of new cold forging lubricants without zinc phosphate precoat. International Journal of Machine Tools and Manufacture 47, 3-4, 673–681.
DOI: 10.1016/j.ijmachtools.2006.04.016
Google Scholar
[11]
Medea, F., Ghiotti, A., and Bruschi, S. 2016. Temperature Effects on Organic Lubricants in Cold Forging of AA1050 Alloy. Procedia Manufacturing 5, 308–318.
DOI: 10.1016/j.promfg.2016.08.027
Google Scholar
[12]
Lenel, F. V. 1980. Powder metallurgy. Principles and applications. Metal Powder Industries Federation, Princeton, N.J.
Google Scholar
[13]
Schatt, W., Wieters, K.-P., and Kieback, B. 2007. Pulvermetallurgie. Technologien und Werkstoffe. VDI-Buch. Springer, Berlin.
DOI: 10.1007/978-3-540-68112-0
Google Scholar
[14]
Huang, C.-C. and Cheng, J.-H. 2004. An investigation into the forming limits of sintered porous materials under different operational conditions. Journal of Materials Processing Technology 148, 3, 382–393.
DOI: 10.1016/j.jmatprotec.2003.10.024
Google Scholar
[15]
Narayanasamy, R., Ramesh, T., and Pandey, K. S. 2008. Some aspects on cold forging of aluminium–iron powder metallurgy composite under triaxial stress state condition. Materials & Design 29, 4, 891–903.
DOI: 10.1016/j.matdes.2006.05.005
Google Scholar
[16]
Mohan Raj, A. P. and Selvakumar, N. 2011. Deformation Behavior of Sintered Fe-C-Mn Composite During Cold Upset Forming. Materials and Manufacturing Processes 26, 11, 1388–1392.
DOI: 10.1080/10426914.2010.544820
Google Scholar
[17]
Prasanna Kumar, U. J., Gupta, P., Jha, A. K., and Kumar, D. 2016. Closed Die Deformation Behavior of Cylindrical Iron–Alumina Metal Matrix Composites During Cold Sinter Forging. J. Inst. Eng. India Ser. D 97, 2, 135–151.
DOI: 10.1007/s40033-015-0089-1
Google Scholar
[18]
Depp, J. C., Ilia, E., and Hähnel, M. 2005. Neue hochfeste Werkstoffe für sintergeschmiedete Pleuelstangen. MTZ - Motortechnische Zeitschrift 2005, 4, 292–298.
DOI: 10.1007/bf03226735
Google Scholar
[19]
Esper, F. J. 1996. Pulvermetallurgie. Das flexible und fortschrittliche Verfahren für wirtschaftliche und zuverlässige Bauteile ; mit 15 Tabellen. Kontakt & Studium Bd. 494. Expert-Verl., Renningen-Malmsheim.
Google Scholar
[20]
Washburn, E. W. 1921. The Dynamics of Capillary Flow. Phys. Rev. 17, 3, 273–283.
Google Scholar
[21]
Rajeshkannan, A. 2010. Workability studies on cold upsetting of sintered copper alloy preforms. Mat. Res. 13, 4, 457–464.
DOI: 10.1590/s1516-14392010000400006
Google Scholar
[22]
Sandner, C., Ratzi, R., Lorenz, B., and Tobie, T. 2002. Sintered gears - achievable load-carrying capacities by conventional and new production methods. March 13-15. International conference on Gears, Vol. 1.
Google Scholar