Medium-Frequency Electrical Resistance Sintering and Electrical Discharge Consolidation of Metallic Powders

Abstract:

Article Preview

Compacts of iron powders were prepared by medium-frequency electrical resistance sintering (MF-ERS) and electrical discharge consolidation (EDC). Structural and mechanical characterization was carried out in order to study the effect of the main processing parameters (current intensity and sintering time in MF-ERS and voltage and capacity in EDC). The compact properties resulted to be quite sensitive to the consolidation method and parameters. Porosities around 8% and microhardness of about 120 HV were reached. It is concluded that the MF-ERS process can be a best option for the consolidation of cemented carbide composites with composition WC-6wt.%Co. MF-ERS compacts of this composite show a very low porosity and reasonable uniform microstructure, preserving the original ultrafine grain size and an adequate hardness with a very quick processing cycle of the order of one second.

Info:

Periodical:

Edited by:

Takashi Amemiya, Xuelin Lei and Xiong Qi Peng

Pages:

123-127

Citation:

F. Ternero et al., "Medium-Frequency Electrical Resistance Sintering and Electrical Discharge Consolidation of Metallic Powders", Key Engineering Materials, Vol. 772, pp. 123-127, 2018

Online since:

July 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] K. Okazaki: Rev. Partic. Mater. Vol. 2 (1994), p.215.

[2] S. Grasso, Y. Sakka and G. Maizza: Sci. Technol. Adv. Mater. Vol. 10 (2009), p.1.

[3] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti and G. Cao: Mat. Sci. Eng. R. Vol. 63 (2009), p.127.

[4] J.M. Montes, J.A. Rodríguez, F.G. Cuevas and J. Cintas: J. Mater. Sci. Vol. 46 (2011), p.5197.

[5] Z.A. Munir, D.V. Quach and M. Ohyanagi: J. Am. Ceram. Soc. Vol. 94 (2011), p.1.

[6] E.A. Olevsky, C. Garcia-Cardona, W.L. Bradbury, C.D. Haines, D.G. Martin and D. Kapoor: J. Am. Ceram. Soc. Vol. 95 (2012), p.2414.

[7] E.A. Olevsky, W. L. Bradbury, C.D. Haines, D.G. Martin and D. Kapoor: J. Am. Ceram. Soc. Vol. 95 (2012), p.2406.

[8] J.M. Montes, F.G. Cuevas, J. Cintas and P. Urban: Met. Mater. Trans. A Vol. 46 (2014), p.963.

[9] D. Zhao, J. Wang, Y. Yang, G. Yang, Y. Qin, J. Liu and D. Yin: MATEC Web of Conferences Vol. 21 (2015), p.10004.

[10] A.S. Rogachev, K.V. Kuskov, N.F. Shkodich, D.O. Moskovskikh, A.O. Orlov, A.A. Usenko, A.V. Karpov, I.D. Kovalev and A.S. Mukasyan: J. Alloys & Comp. Vol. 688 (2016), p.468.

DOI: https://doi.org/10.1016/j.jallcom.2016.07.061

[11] S. Rothe and S. Hartmann: GAMM-Mitt. Vol. 40 (2017) p.8.

[12] L.P. Bulat, A.V. Novotel'nova, V.B. Osvenskii, A.I. Sorokin, D.A. Pshenai-Severin, A.S. Tukmakova and D. Yerezhep: Tech. Phys. Lett. Vol. 43 (2017) p.658.

DOI: https://doi.org/10.1134/s1063785017070185

[13] M.V. Zamula, A.V. Derevyanko, V.G. Kolesnichenko, A.V. Samelyuk, O.B. Zgalat-Lozinskii and A.V. Ragulya: Powder Metallurgy and Metal Ceramics Vol. 46 (2007), p.19.

DOI: https://doi.org/10.1007/s11106-007-0052-2

[14] J. Pötschke, V. Richter, T. Gestrich, T. Säuberlich and J.A. Meese-Marktscheffel: Int. J. Refract. Met. Hard Mater. Vol. 66 (2017), p.95.

[15] K. Mannesson, M. Elfwing, A. Kusoffsky, S. Norgren and J. Ågren: Int. J. Refract. Met. Hard Mater. Vol. 26 (2008), p.449.